• poj2955括号匹配 区间DP


    Brackets
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5424   Accepted: 2909

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end
    

    Sample Output

    6
    6
    4
    0
    6
     
    题意:有一串括号,() 或者 [ ]这样算作匹配,如果s1匹配了,那么(s1) [s1]也算匹配,其他都是不合法的。
    输入一串括号,问你匹配的长度是多少。
     
    思路:
    区间dp。dp[i]j]表示以i开始的长度为j的匹配的个数。转移的时候还需要考虑 j 到 j+i 之间的这一段,设其最大值x,
    如果s[j] == s[j+i] ,x += 1.然后就是状态转移的方程 dp[j][i] = max(x,dp[j][k] + dp[k+j][i-k] | k表示<=i的长度);
    因为只进行状态转移的话,无法考虑匹配的情况,所以我先处理匹配时候的值。
     
    #include<set>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<string>
    #include<time.h>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define INF 1000000001
    #define ll long long
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    using namespace std;
    const int MAXN = 110;
    int dp[MAXN][MAXN];
    char s[MAXN];
    int ok(char k1,char k2)
    {
        if(k1 == '(' && k2 == ')')
            return 1;
        if(k1 == '[' && k2 == ']')
            return 1;
        return 0;
    }
    int main()
    {
        while(~scanf("%s",s+1)){
            if(s[1] == 'e')break;
            int len = strlen(s+1);
            int ans = 0;
            memset(dp,0,sizeof(dp));
            for(int i = 2; i <= len; i++){
                for(int j = 1; j <= len - i + 1; j++){
                    if(i == 2 && ok(s[j],s[j+i-1])){
                        dp[j][i] = 1;
                    }
                    else if(i > 2){
                        int p = 0;
                        for(int k = 0; k <= i - 2; k++){
                            p = max(p,dp[j+1][k]+dp[j+k+1][i-k-2]);
                            //cout<<i<<endl;
                            //cout<<dp[j+1][k]<<' '<<j+1<<' '<<k<<' '<<endl;
                            //cout<<dp[j+k+1][i-k-1]<<' '<<j+k+1<<' '<<i-k-1<<' '<<endl;
                        }
                        if(ok(s[j],s[j+i-1])){
                            p++;
                        }
                        dp[j][i] = max(p,dp[j][i]);
                        for(int k = 0; k <= i; k++){
                            dp[j][i] = max(dp[j][i],dp[j][k]+dp[j+k][i-k]);
                        }
                    }
                }
            }
            printf("%d
    ",dp[1][len] * 2);
        }
        return 0;
    }
  • 相关阅读:
    Vue+vue-i18n实现国际化(中英文切换)
    webpack性能优化之配置dll后npm run dev出错
    日期格式快速转时间戳,获取最近一个月等处理方法
    使用window.print()实现网页打印
    前端获取服务器时间
    vue项目中main.js引入全局scss文件时报错
    项目管理【71】 | 项目集管理
    项目管理【70】 | 流程管理
    项目管理【69】 | 组织级项目管理
    项目管理【68】 | 战略管理
  • 原文地址:https://www.cnblogs.com/sweat123/p/5482470.html
Copyright © 2020-2023  润新知