• hdu3416 判断最短路是否唯一(每条边只能走一次)


    Marriage Match IV

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3147    Accepted Submission(s): 946


    Problem Description
    Do not sincere non-interference。
    Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once. 


    So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
     

    Input
    The first line is an integer T indicating the case number.(1<=T<=65)
    For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

    Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.

    At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
    There may be some blank line between each case.
     

    Output
    Output a line with a integer, means the chances starvae can get at most.
     

    Sample Input
    
    
    3 7 8 1 2 1 1 3 1 2 4 1 3 4 1 4 5 1 4 6 1 5 7 1 6 7 1 1 7 6 7 1 2 1 2 3 1 1 3 3 3 4 1 3 5 1 4 6 1 5 6 1 1 6 2 2 1 2 1 1 2 2 1 2
     

    Sample Output
    2 1 1
     
    题意:
    有n个城市,m条边,a到b耗费为c,为单向边。要求从s到t的最短路径有多少条,每一条边只能走一次。
     
    思路:
    如果每天边不一定走一次的话,那么可以通过树形dp来求解。但是这里每条边只能走一次,也就是说每条路径上面的边的流量为1,从起点到终点求一次最大流即可。这样题目就能够用最大流来解决。对于建立新的图,可以先从终点到起点求一次最短路,然后从起点开始dfs,并且维护now[]数组,表示从起点到这个点的路径长度,
    如果now[rt] + dis[t] + edge[i].val == dis[S](dis[]的起点是原本图中的终点),那么说明这两个点是最短路上的点,那么可以连边,流量为1,。跑一次最大流解决问题了。
     
    #include<set>
    #include<map>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<string>
    #include<time.h>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define INF 1000000001
    #define ll long long
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    using namespace std;
    const int MAXN = 1010;
    struct node
    {
        int to;
        int val;
        int next;
    }edge[MAXN*100*2],e[MAXN*200*5];
    int ind,pre[MAXN],vis[MAXN],dis[MAXN],pre1[MAXN],ind1;
    int now[MAXN],S,T;
    int n,m;
    void add1(int x,int y,int z)
    {
        e[ind1].to = y;
        e[ind1].val = z;
        e[ind1].next = pre1[x];
        pre1[x] = ind1 ++;
    }
    void spfa()
    {
        for(int i = 1; i <= n; i++){
            dis[i] = INF;
            vis[i] = 0;
        }
        vis[T] = 1;
        dis[T] = 0;
        queue<int>q;
        q.push(T);
        while(!q.empty()){
            int tp = q.front();
            q.pop();
            vis[tp] = 0;
            for(int i = pre1[tp]; i != -1; i = e[i].next){
                int t = e[i].to;
                if(dis[t] > dis[tp] + e[i].val){
                    dis[t] = dis[tp] + e[i].val;
                    if(!vis[t]){
                        vis[t] = 1;
                        q.push(t);
                    }
                }
            }
        }
    }
    void add(int x,int y,int z)
    {
        edge[ind].to = y;
        edge[ind].val = z;
        edge[ind].next = pre[x];
        pre[x] = ind ++;
    }
    void dfs1(int rt)
    {
        vis[rt] = 1;
        if(rt == T)return ;
        for(int i = pre1[rt]; i != -1; i = e[i].next){
            int t = e[i].to;
            if(now[rt] + dis[t] + e[i].val == dis[S]){
                now[t] = now[rt] + e[i].val;
                add(rt,t,1);
                add(t,rt,0);
                if(!vis[t]){
                    dfs1(t);
                }
            }
        }
    }
    int bfs()
    {
        memset(vis,-1,sizeof(vis));
        queue<int>q;
        vis[S] = 0;
        q.push(S);
        while(!q.empty()){
            int tp = q.front();
            q.pop();
            for(int i = pre[tp]; i != -1; i = edge[i].next){
                int t = edge[i].to;
                if(vis[t] == -1 && edge[i].val){
                    vis[t] = vis[tp] + 1;
                    q.push(t);
                }
            }
        }
        if(vis[T] == -1)return 0;
        return 1;
    }
    int dfs(int rt,int low)
    {
        int used = 0;
        if(rt == T)return low;
        for(int i = pre[rt]; i != -1 && used < low; i = edge[i].next){
            int t = edge[i].to;
            if(vis[t] == vis[rt] + 1 && edge[i].val){
                int a = dfs(t,min(low-used,edge[i].val));
                used += a;
                edge[i].val -= a;
                edge[i^1].val += a;
            }
        }
        if(used == 0)vis[rt] = -1;
        return used;
    }
    int x[MAXN*100],y[MAXN*100],z[MAXN*100];
    void Init(int flag)
    {
        ind1 = 0;
        memset(pre1,-1,sizeof(pre1));
        for(int i = 1; i <= m; i++){
            if(!flag){
                add1(y[i],x[i],z[i]);
            }
            else {
                add1(x[i],y[i],z[i]);
            }
        }
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&n,&m);
            for(int i = 1; i <= m; i++){
                scanf("%d%d%d",&x[i],&y[i],&z[i]);
            }
            Init(0);
            scanf("%d%d",&S,&T);
            spfa();
            Init(1);
            ind = 0;
            memset(now,0,sizeof(now));
            memset(pre,-1,sizeof(pre));
            dfs1(S);
            int ans = 0;
            while(bfs()){
                while(1){
                    int a = dfs(S,INF);
                    if(!a)break;
                    ans += a;
                }
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    原生ES-Module在浏览器中的尝试
    常见的web攻击总结
    node第三方模块----nodemailer发送邮件
    08----mockjs处理前端传来的路径,获取?后面的值
    07----mockjs获取前端传递的数据
    05-----Mock.Random 扩展方法
    03----Mock.mock() 生成接口,随机数据
    06----Mock.setup()
    十一. for of
    十.数组解构
  • 原文地址:https://www.cnblogs.com/sweat123/p/5466911.html
Copyright © 2020-2023  润新知