Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
tag: 经典动态规划。
自顶向下, 空间复杂度 O(N^2)
顶底向上,空间复杂度O(N).
自顶向下
public class Solution { public int minimumTotal(List<List<Integer>> triangle) { if(triangle == null || triangle.size() == 0) { return Integer.MAX_VALUE; } int size = triangle.size(); int[][] f = new int[size][size]; f[0][0] = triangle.get(0).get(0); //initialize the diagonal for(int i = 1; i < size; i++ ) { f[i][i] = f[i - 1][i - 1] + triangle.get(i).get(i); } for(int i = 1 ; i < size; i++) { f[i][0] = f[i - 1][0] + triangle.get(i).get(0); } for(int i = 1; i < size; i++){ for(int j = 1; j < i;j++) { f[i][j] = triangle.get(i).get(j) + Math.min(f[i - 1][j - 1], f[i - 1][j]); } } int min = f[size - 1][0]; for(int k = 1; k < size; k++) { min = Math.min(min, f[size - 1][k]); } return min; } }
自底向上
public int minimumTotal(List<List<Integer>> triangle) { int[] A = new int[triangle.size()+1]; for(int i=triangle.size()-1;i>=0;i--){ for(int j=0;j<triangle.get(i).size();j++){ A[j] = Math.min(A[j],A[j+1])+triangle.get(i).get(j); } } return A[0]; }