• deepNN


    不做卷积,只是增加多层神经网络层。

    #-*- encoding:utf-8 -*-
    #!/usr/local/env python
    
    import numpy as np
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    def add_layer(inputs, in_size, out_size, activation_function=None):
        W = tf.Variable(tf.random_normal([in_size, out_size]))
        b = tf.Variable(tf.zeros([1, out_size]) + 0.01)
    
        Z = tf.matmul(inputs, W) + b
        if activation_function is None:
            outputs = Z
        else:
            outputs = activation_function(Z)
    
        return outputs
    
    
    if __name__ == "__main__":
    
        MNIST = input_data.read_data_sets("mnist", one_hot=True)
    
        learning_rate = 0.01
        batch_size = 128
        n_epochs = 70
    
        X = tf.placeholder(tf.float32, [batch_size, 784])
        Y = tf.placeholder(tf.float32, [batch_size, 10])
    
        layer_dims = [784, 500, 500, 10]
        layer_count = len(layer_dims)-1 # 不算输入层
        layer_iter = X
    
        for l in range(1, layer_count): # layer [1,layer_count-1] is hidden layer
            layer_iter = add_layer(layer_iter, layer_dims[l-1], layer_dims[l], activation_function=tf.nn.relu)
        prediction = add_layer(layer_iter, layer_dims[layer_count-1], layer_dims[layer_count], activation_function=None)
    
        entropy = tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=prediction)
        loss = tf.reduce_mean(entropy)
    
        optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
    
        init = tf.initialize_all_variables()
    
        with tf.Session() as sess:
            sess.run(init)
    
            n_batches = int(MNIST.test.num_examples/batch_size)
            for i in range(n_epochs):
                for j in range(n_batches):
                    X_batch, Y_batch = MNIST.train.next_batch(batch_size)
                    _, loss_ = sess.run([optimizer, loss], feed_dict={X: X_batch, Y: Y_batch})
                    if i % 10 == 5 and j == 0:
                        print( "Loss of epochs[{0}]: {1}".format(i, loss_))
    
            # test the model
            n_batches = int(MNIST.test.num_examples/batch_size)
            total_correct_preds = 0
            for i in range(n_batches):
                X_batch, Y_batch = MNIST.test.next_batch(batch_size)
                preds = sess.run(prediction, feed_dict={X: X_batch, Y: Y_batch})
                correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y_batch, 1))
                accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
    
                total_correct_preds += sess.run(accuracy)
    
            print ("Accuracy {0}".format(total_correct_preds/MNIST.test.num_examples))
    View Code
  • 相关阅读:
    Java 中的 TreeSet
    自定义全局异常处理器(Java)
    GitHub Open Feign 使用总结
    搭建 Maven 仓库
    MySQL 的 SQL 笔记
    一道算法题:查找数组 arr 中第 k 小的奇数
    Java 的参数传递
    接口限流的几种算法
    Java 实现一个自定义分布式 Session
    函数反汇编
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/9531932.html
Copyright © 2020-2023  润新知