第90讲:基于Scala的Actor之上的分布式并发消息驱动框架Akka初体验
akka在业界使用非常广泛
spark背后就是由akka驱动的
要写消息驱动的编程模型都首推akka
下面将用30讲讲解akka
本讲主要讲两部分内容:
1.akka的重大意义
2.akka与scala的actor
Spark源码中使用akka使用鉴赏:
在spark中有200行左右代码封装了akka的使用
spark是分布式的计算框架,有master和slave主从节点通信时都是使用akka。
客户端提交程序时也是使用akka。所以如果要掌握spark必须要理解和掌握akka。
第91讲:Akka第一个案例动手实战架构设计
The quick brown fox tried to jump over the lazy dog and fell on the dog
A dog is a man's best friend
Map Task -> Reduce Task --|
|-> Aggregate Task
Map Task -> Reduce Task --|
Master Actor
|
--------------------|---------------------
| | |
Map Actor Reduce Actor Aggregate Actor
Master Actor给MapActor发一个字符串
Map Actor根据规则对单词计数,计数完成后把结果传递给MasterActor
MasterActor把MapData以消息发给reduceActor,
reduceActor会reduceByKey,把相同单词(key相同)计数相加。
计算完后再把数据传回给MasterActor。
如果有多条字符串就会有多组reduce结果。
MasterActor再把结果发给AggregateActor,进行最后统计
MasterActor要获得结果需要给AggregateActor发一个空消息,
AggregateActor收到消息就会把所有统计结果发给MasterActor
这就是mapReduce计算模型。
与hadoop的mapreduce不同的是这是基于actor的。
MapActor对map产生的结果进行本地化统计,
AggregateActor才相当于hadoop的reducer。
后面先通过java使用akka。
第92讲:Akka第一个案例动手实战开发环境的搭建
第93讲:Akka第一个案例动手实战开发消息实体类
MapData:
package akka.dt.app.java.messages; import java.util.List; /** * sunrunzhi * 2018/11/12 9:46 * 用来让MapActor处理数据后存储在MapData实体中 * 然后方便将结果交给ReduceActor */ public class MapData { private List<WordCount> dataList; public List<WordCount> getDataList(){return dataList;} public MapData(List<WordCount> dataList){ this.dataList=dataList; } }
ReduceData:
package akka.dt.app.java.messages; import java.util.HashMap; /** * sunrunzhi * 2018/11/12 13:35 */ public class ReduceData { private HashMap<String,Integer> reduceDataList; public HashMap<String,Integer> getReduceDataList(){ return reduceDataList; } public ReduceData(HashMap<String,Integer> reduceDataList){ this.reduceDataList=reduceDataList; } }
Result:
package akka.dt.app.java.messages; /** * sunrunzhi * 2018/11/12 9:58 */ public class Result { /*传入的字符串先交给MapActor进行切分,然后交给ReduceActor进行本地统计, 最后交给AggregateActor进行全局的统计, 想要获得这个结果,通过MasterActor发一个消息Result,Result本身为空,不需要有任何内容。 这个消息交给MasterActor,MasterActor收到消息时,如果消息是result类型的话转过来会告诉AggregateActor, 再转发给AggregateActor。*/ }
WordCount:
package akka.dt.app.java.messages; /** * sunrunzhi * 2018/11/12 9:52 * WordCount-javaBean */ public class WordCount { private String word; private Integer count; public WordCount(String inWord,Integer inCount){ word=inWord; count=inCount; } public String getWord(){return word;} public Integer getCount(){return count;} }
HelloAkka:
package akka.dt.app.java.messages; import akka.actor.ActorRef; import akka.actor.ActorSystem; import akka.actor.Props; import akka.dt.app.java.actors.MasterActor; /** * sunrunzhi * 2018/11/9 20:14 */ public class HelloAkka { public static void main(String[] args)throws Exception{ ActorSystem _system=ActorSystem.create("HelloAkka"); ActorRef master=_system.actorOf(new Props(MasterActor.class),"master"); master.tell("Hi,My name is Rocky. I'm so so so so happy to me here."); master.tell("Today,I'm going to read a news article for so you."); master.tell("I hope I hope you'll like it."); Thread.sleep(500); master.tell(new Result()); Thread.sleep(500); _system.shutdown(); } }
第94讲:Akka第一个案例动手实战MapActor、ReduceActor、AggregateActor代码详解
AggregateActor:
package akka.dt.app.java.actors; import akka.actor.UntypedActor; import akka.dt.app.java.messages.ReduceData; import akka.dt.app.java.messages.Result; import java.util.HashMap; import java.util.Map; /** * sunrunzhi * 2018/11/9 20:18 */ public class AggregateActor extends UntypedActor{ private Map<String,Integer> finalReducedMap=new HashMap<String, Integer>(); @Override public void onReceive(Object message)throws Exception{ //AggregateActor收到消息有两种,一种是ReduceData类型,一种是Result类型 if(message instanceof ReduceData){ ReduceData reduceData=(ReduceData)message; aggregateInMemoryReduce(reduceData.getReduceDataList()); }else if(message instanceof Result){ System.out.println(finalReducedMap.toString()); }else{ unhandled(message); } } private void aggregateInMemoryReduce(Map<String,Integer> reduceList){ Integer count=null; for (String key:reduceList.keySet()){ if(finalReducedMap.containsKey(key)){ count=reduceList.get(key)+finalReducedMap.get(key); finalReducedMap.put(key,count); }else{ finalReducedMap.put(key,reduceList.get(key)); } } } }
MapActor:
package akka.dt.app.java.actors; import akka.actor.ActorRef; import akka.actor.UntypedActor; import akka.dt.app.java.messages.MapData; import akka.dt.app.java.messages.WordCount; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.StringTokenizer; /** * sunrunzhi * 2018/11/9 20:17 */ public class MapActor extends UntypedActor { String[] STOP_WORDS = {"a", "is"}; private ActorRef reduceActor = null; private List<String> STOP_WORDS_LIST = Arrays.asList(STOP_WORDS); public MapActor(ActorRef inReduceActor) { reduceActor = inReduceActor; } @Override public void onReceive(Object message) throws Exception { if (message instanceof String) { String work = (String) message; //map the words in the sentence MapData data = evaluateExpression(work);//产生MapData实体 // send the result to ReduceActor reduceActor.tell(data); } else { unhandled(message); } } private MapData evaluateExpression(String line) { List<WordCount> dataList = new ArrayList<WordCount>(); StringTokenizer parser = new StringTokenizer(line); while (parser.hasMoreTokens()){ String word =parser.nextToken().toLowerCase(); if (!STOP_WORDS_LIST.contains(word)) { dataList.add(new WordCount(word, Integer.valueOf(1))); } } return new MapData(dataList); } }
ReduceActor:
package akka.dt.app.java.actors; import akka.actor.ActorRef; import akka.actor.UntypedActor; import akka.dt.app.java.messages.MapData; import akka.dt.app.java.messages.ReduceData; import akka.dt.app.java.messages.WordCount; import com.sun.javafx.collections.MappingChange; import java.util.HashMap; import java.util.List; /** * sunrunzhi * 2018/11/9 20:17 */ public class ReduceActor extends UntypedActor{ private ActorRef aggregateActor =null; public ReduceActor(ActorRef inAggregateActor) { aggregateActor=inAggregateActor; } @Override public void onReceive(Object message) throws Exception{ //AggregateActor收到的消息有两种,一种是ReduceData类型,一种是Result类型 if(message instanceof MapData){ MapData mapData =(MapData)message; //reduce the incoming data ReduceData reduceData=reduce(mapData.getDataList()); //forward the result to aggregate actor aggregateActor.tell(reduceData); }else { unhandled(message); } } private ReduceData reduce(List<WordCount> dataList){ HashMap<String,Integer> reducedMap=new HashMap<String, Integer>(); for(WordCount wordCount:dataList){ if(reducedMap.containsKey(wordCount.getWord())){ Integer value=(Integer)reducedMap.get(wordCount.getWord()); value++; reducedMap.put(wordCount.getWord(),value); }else{ reducedMap.put(wordCount.getWord(),Integer.valueOf(1)); } } return new ReduceData(reducedMap); } }
MasterActor:
package akka.dt.app.java.actors; import akka.actor.*; import akka.dt.app.java.messages.Result; import java.util.Arrays; import java.util.List; /** * sunrunzhi * 2018/11/9 20:18 */ public class MasterActor extends UntypedActor { private ActorRef aggregaterActor = getContext().actorOf( new Props(AggregateActor.class), "aggregate"); private ActorRef reduceActor=getContext().actorOf( new Props(new UntypedActorFactory() { public UntypedActor create() { return new ReduceActor(aggregaterActor); } }),"reduce"); private ActorRef mapActor=getContext().actorOf( new Props(new UntypedActorFactory(){ public UntypedActor create(){ return new MapActor(reduceActor); } }),"map"); @Override public void onReceive(Object message) throws Exception{ if (message instanceof String) { mapActor.tell(message); } else if (message instanceof Result) { aggregaterActor.tell(message); } else{ unhandled(message); } } }
第95讲:Akka第一个案例动手实战MasterActor代码详解
第96讲:Akka第一个案例动手实战main方法实现中ActorSystem等代码详解
第97讲:使用SBT开发Akka第一个案例环境搭建详解
SBT import失败:
一步一个坑。凑人~~~
之前调整的项目有报莫名其妙的BUG。
第一个BUG。
解决方案:标识红色处打上对号。
总有些奇奇怪怪的BUG,莫名其妙的又没有了........