• Sqlserver中PIVOT行转列透视操作


    创建表:

    IF OBJECT_ID('T040_PRODUCT_SALES') IS NOT NULL
    DROP TABLE T040_PRODUCT_SALES
    create table T040_PRODUCT_SALES
    (
     ID INT IDENTITY(1,1),
       ProductName VARCHAR(20),
       SaleMonth INT,
       SalesCount INT
    )
    

     插入数据并排序:

    INSERT INTO T040_PRODUCT_SALES VALUES
    ('Bicycle',1,1),
    ('Shoes',2,2),
    ('Clothes',3,3),
    ('Books',4,4),
    ('Medicine',5,5),
    ('Drinks',6,6),
    ('Shoes',7,7),
    ('Books',1,2),
    ('Bicycle',1,3),
    ('Medicine',1,4),
    ('Clothes',1,5),
    ('Mobile Phone',1,6),
    ('Books',1,7),
    ('Medicine',1,8),
    ('Shoes',1,9),
    ('Bicycle',2,10)
    SELECT ProductName,
        SaleMonth,
        SUM(SalesCount) AS SalesCount
    FROM T040_PRODUCT_SALES
    GROUP BY ProductName,
       SaleMonth
    ORDER BY ProductName,
          SaleMonth
    

     

    格式:

    /****
    SELECT 非透视列,
                 [透视列 1] AS '列名1',
                 [透视列 2] AS '列名2',
                 [透视列 3] AS '列名3'
    FROM (
            -- 源数据
            SELECT 非透视列,
                   透视列值的来源列,
                   需要聚合的值
            FROM 表
         )AS 别名
    PIVOT
         (
            SUM(需要聚合的值)
            FOR 透视列值的来源列 IN ([透视列 1],[透视列 2],[透视列 3])
         )AS 别名
    ****/
    

     行转列的代码:

    select ProductName,
        ISNULL([1],0) AS '1',
        ISNULL([2],0) AS '2',
        ISNULL([3],0) AS '3',
        ISNULL([4],0) AS '4',
        ISNULL([5],0) AS '5',
        ISNULL([6],0) AS '6'  from (
    	select ProductName,
         SaleMonth,
         SalesCount from T040_PRODUCT_SALES)
    	 as Sales
    	 pivot
    	 (
    	 SUM(SalesCount)
     FOR SaleMonth IN([1],[2],[3],[4],[5],[6])
    	 ) as   PIVOTBL
    

     结果:

    通过其他方式实现:

    IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[TestRows2Columns]') AND type in (N'U'))
    DROP TABLE [dbo].[TestRows2Columns]
    GO
    CREATE TABLE [dbo].[TestRows2Columns](
        [Id] [int] IDENTITY(1,1) NOT NULL,
        [UserName] [nvarchar](50) NULL,
        [Subject] [nvarchar](50) NULL,
        [Source] [numeric](18, 0) NULL
    ) ON [PRIMARY]
    GO
    
    INSERT INTO [TestRows2Columns] ([UserName],[Subject],[Source]) 
        SELECT N'张三',N'语文',60  UNION ALL
        SELECT N'李四',N'数学',70  UNION ALL
        SELECT N'王五',N'英语',80  UNION ALL
        SELECT N'王五',N'数学',75  UNION ALL
        SELECT N'王五',N'语文',57  UNION ALL
        SELECT N'李四',N'语文',80  UNION ALL
        SELECT N'张三',N'英语',100
    

     实现方式:

    --1:静态拼接行转列
    	SELECT [UserName],
    	SUM(CASE [Subject] WHEN '数学' THEN [Source] ELSE 0 END) AS '[数学]',
    SUM(CASE [Subject] WHEN '英语' THEN [Source] ELSE 0 END) AS '[英语]',
    SUM(CASE [Subject] WHEN '语文' THEN [Source] ELSE 0 END) AS '[语文]'  
    	 FROM 
    	[TestRows2Columns] 
    	GROUP BY [UserName]
    
    --2.动态拼接
    	DECLARE @sql VARCHAR(8000)
    	SET @sql='SELECT [UserName],'
    	--它只用于给输入的字符串加一对方括号,并返回新形成的字符串
    	SELECT @sql=@sql+ 'SUM(CASE [Subject] WHEN '''+[Subject]+''' THEN [Source] ELSE 0 END) AS '''+QUOTENAME([Subject])+''','   
    FROM (SELECT DISTINCT [Subject] FROM [TestRows2Columns]) AS a     
    SELECT @sql = LEFT(@sql,LEN(@sql)-1) + ' FROM [TestRows2Columns] GROUP BY [UserName]'   
    PRINT(@sql)
    EXEC(@sql)
    
    --3:静态PIVOT行转列
    SELECT  *
    FROM    ( SELECT    [UserName] ,
                        [Subject] ,
                        [Source]
              FROM      [TestRows2Columns]
            ) p PIVOT
    ( SUM([Source]) FOR [Subject] IN ( [数学],[英语],[语文] ) ) AS pvt
    ORDER BY pvt.[UserName];
    
    
    --4:动态PIVOT行转列
    DECLARE @sql_str VARCHAR(8000)
    DECLARE @sql_col VARCHAR(8000)
    SELECT @sql_col = ISNULL(@sql_col + ',','') + QUOTENAME([Subject]) FROM [TestRows2Columns] GROUP BY [Subject]
    SET @sql_str = '
    SELECT * FROM (
        SELECT [UserName],[Subject],[Source] FROM [TestRows2Columns]) p PIVOT 
        (SUM([Source]) FOR [Subject] IN ( '+ @sql_col +') ) AS pvt 
    ORDER BY pvt.[UserName]'
    PRINT (@sql_str)
    EXEC (@sql_str)
    
    --5.参数化
    DECLARE @sql_str NVARCHAR(MAX)
    DECLARE @sql_col NVARCHAR(MAX)
    DECLARE @tableName SYSNAME --行转列表
    DECLARE @groupColumn SYSNAME --分组字段
    DECLARE @row2column SYSNAME --行变列的字段
    DECLARE @row2columnValue SYSNAME --行变列值的字段
    SET @tableName = 'TestRows2Columns'
    SET @groupColumn = 'UserName'
    SET @row2column = 'Subject'
    SET @row2columnValue = 'Source'
    
    --从行数据中获取可能存在的列
    SET @sql_str = N'
    SELECT @sql_col_out = ISNULL(@sql_col_out + '','','''') + QUOTENAME(['+@row2column+']) 
        FROM ['+@tableName+'] GROUP BY ['+@row2column+']'
    --PRINT @sql_str
    EXEC sp_executesql @sql_str,N'@sql_col_out NVARCHAR(MAX) OUTPUT',@sql_col_out=@sql_col OUTPUT
    --PRINT @sql_col
    
    SET @sql_str = N'
    SELECT * FROM (
        SELECT ['+@groupColumn+'],['+@row2column+'],['+@row2columnValue+'] FROM ['+@tableName+']) p PIVOT 
        (SUM(['+@row2columnValue+']) FOR ['+@row2column+'] IN ( '+ @sql_col +') ) AS pvt 
    ORDER BY pvt.['+@groupColumn+']'
    --PRINT (@sql_str)
    EXEC (@sql_str)
    
    --6:带条件查询的参数化动态PIVOT行转列
    DECLARE @sql_str NVARCHAR(MAX)
    DECLARE @sql_col NVARCHAR(MAX)
    DECLARE @sql_where NVARCHAR(MAX)
    DECLARE @tableName SYSNAME --行转列表
    DECLARE @groupColumn SYSNAME --分组字段
    DECLARE @row2column SYSNAME --行变列的字段
    DECLARE @row2columnValue SYSNAME --行变列值的字段
    SET @tableName = 'TestRows2Columns'
    SET @groupColumn = 'UserName'
    SET @row2column = 'Subject'
    SET @row2columnValue = 'Source'
    SET @sql_where = 'WHERE UserName = ''王五'''
    
    --从行数据中获取可能存在的列
    SET @sql_str = N'
    SELECT @sql_col_out = ISNULL(@sql_col_out + '','','''') + QUOTENAME(['+@row2column+']) 
        FROM ['+@tableName+'] '+@sql_where+' GROUP BY ['+@row2column+']'
    --PRINT @sql_str
    EXEC sp_executesql @sql_str,N'@sql_col_out NVARCHAR(MAX) OUTPUT',@sql_col_out=@sql_col OUTPUT
    --PRINT @sql_col
    
    SET @sql_str = N'
    SELECT * FROM (
        SELECT ['+@groupColumn+'],['+@row2column+'],['+@row2columnValue+'] FROM ['+@tableName+']'+@sql_where+') p PIVOT 
        (SUM(['+@row2columnValue+']) FOR ['+@row2column+'] IN ( '+ @sql_col +') ) AS pvt 
    ORDER BY pvt.['+@groupColumn+']'
    --PRINT (@sql_str)
    EXEC (@sql_str)
    
  • 相关阅读:
    CSV格式的文件与EXCEL文件的区别
    Arcgis 离线部署api 4.x的两种本地部署方法!
    IDEA版部署离线ArcGIS api for JavaScript
    java web中统一结果返回封装类JsonResult
    网络最大流dinic
    Luogu P3834 可持久化线段树2(主席树)
    LuoguP2824[HEOI2016/TJOI2016]排序
    2021.03.24模拟赛DP
    Luogu P3166数三角形
    乘法逆元
  • 原文地址:https://www.cnblogs.com/sunliyuan/p/6595977.html
Copyright © 2020-2023  润新知