Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
问题描述:给定一个二叉树,判断它是否是一个合法的二叉查找树。
二叉查找树的定义如上,它的定义本身就是递归的,因此,就可以按照上面的定义来判断。那么,如何来使用开始两条限制条件呢,即关于节点的键的大小次序。
这里采用获取左右子树最小值和最大值的方式,那么可以这样来判断一个二叉树是否是二叉查找树:
(1)左子树的最大值小于当前节点的键值;
(2)右子树的最小值大于当前节点的键值;
(3)左右子树都是二叉查找树。
当然,在判断完了之后,还应该返回本二叉树的最小值和最大值。
代码将情况分成了5中情况:
(1)节点是空节点,只在树本身就是空的情况下;
(2)左右子树都为空,节点是叶子节点,此时它是二叉查找树,并且该树的最小值和最大值都是该节点的值;
(3)左子树为空,右子树不空,此时只要右子树是二叉查找树,并且右子树的最小值大于节点的值,该树即是二叉查找树;
(4)左子树不空,有子树为空,与(3)类似;
(5)左右子树都不空,则只有当左右子树都是二叉查找树,并且左子树的最大值小于该节点的值,右子树的最小值大于节点的值。
class Solution { public: bool isValid(TreeNode *root, int &big, int &small) { if(root == NULL) { return true; } if(root->left == NULL && root->right == NULL) { big = root->val; small = root->val; return true; } else if(root->left == NULL && root->right) { int b = 0, s = 0; if(isValid(root->right, b, s) && s > root->val) { big = b; small = root->val; return true; } else return false; } else if(root->left && root->right == NULL) { int b = 0, s = 0; if(isValid(root->left, b, s) && b < root->val) { big = root->val; small = s; return true; } else return false; } bool ret = false; int b_left = 0, b_right = 0, s_left = 0, s_right = 0; if(isValid(root->left, b_left, s_left) && isValid(root->right, b_right, s_right) && b_left < root->val && s_right > root->val) ret = true; big = b_right; small = s_left; return ret; } bool isValidBST(TreeNode *root) { // IMPORTANT: Please reset any member data you declared, as // the same Solution instance will be reused for each test case. int b = 0, s = 0; return isValid(root, b, s); } };