• BZOJ 2959 长跑 (LCT、并查集)


    题目链接

    https://www.lydsy.com/JudgeOnline/problem.php?id=2959

    题解

    真是被这题搞得心态大崩……调了7个小时……然而并查集都能写成(O(n^2))的我还能怪谁呢

    显然要把每个边双连通分量缩成点,点权为边双连通分量内所有点点权和,然后答案就等于两点路径上点权和
    现在需要用LCT维护,就比较麻烦
    大概是一边LCT一边使用并查集分别维护连通块和边双连通分量
    加边时,若两点不联通,则link, 然后在维护连通块的并查集里并起来
    若两点联通但不在同一边双中,则把这两个点路径上的所有边双缩到一起(其实就是“删除点”),顺便加入到边双连通分量的并查集中
    这个可以通过把路径的splay提取出来进行DFS实现,因为每个点只会被删一次所以复杂度正确
    但是这里由于缩点,我们每次在lct中访问父亲的时候要求它树上父亲在并查集里的代表元素。。。所以很容易写错
    时间复杂度(O(nlog nalpha(n))).

    代码

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<cassert>
    #include<ctime>
    #define llong long long
    using namespace std;
    
    const int N = 1.5e5;
    struct SplayNode
    {
    	int son[2],fa,sum,val,rev;
    } spl[N+3];
    int uf1[N+3],uf2[N+3];
    int stk[N+3];
    int a[N+3];
    int n,q;
    
    inline int read()
    {
        int ret = 0; char ch = getchar();
        while(ch < '0' || ch > '9') ch = getchar();
        while(ch >= '0' && ch <= '9') ret = (ret << 3) + (ret << 1) + ch - '0' , ch = getchar();
        return ret;
    }
    
    int findfa(int id,int u)
    {
    	if(id==0)
    	{
    		int i = u;
    		while(u!=uf1[u]) {u = uf1[u];}
    		while(uf1[i]!=u)
    		{
    			int j = uf1[i]; uf1[i] = u; i = j;
    		}
    	}
    	else
    	{
    		int i = u;
    		while(u!=uf2[u]) {u = uf2[u];}
    		while(uf2[i]!=u)
    		{
    			int j = uf2[i]; uf2[i] = u; i = j;
    		}
    	}
    	return u;
    }
    
    bool isroot(int u) {int uu = findfa(1,spl[u].fa); return spl[uu].son[0]!=u && spl[uu].son[1]!=u;}
    bool sondir(int u) {return u==spl[findfa(1,spl[u].fa)].son[1];}
    
    void pushup(int u)
    {
    	spl[u].sum = spl[spl[u].son[0]].sum+spl[u].val+spl[spl[u].son[1]].sum;
    }
    
    void pushdown(int u)
    {
    	int ls = spl[u].son[0],rs = spl[u].son[1];
    	if(spl[u].rev)
    	{
    		spl[u].rev = 0;
    		if(ls)
    		{
    			swap(spl[ls].son[0],spl[ls].son[1]);
    			spl[ls].rev ^= 1;
    		}
    		if(rs)
    		{
    			swap(spl[rs].son[0],spl[rs].son[1]);
    			spl[rs].rev ^= 1;
    		}
    	}
    }
    
    void rotate(int u)
    {
    	int x = findfa(1,spl[u].fa),y = findfa(1,spl[x].fa); bool dir = sondir(u)^1;
    	if(!isroot(x)) {spl[y].son[sondir(x)] = u;}
    	spl[u].fa = y;
    	spl[x].son[dir^1] = spl[u].son[dir];
    	if(spl[x].son[dir^1]) {spl[spl[x].son[dir^1]].fa = x;}
    	spl[u].son[dir] = x; spl[x].fa = u;
    	pushup(x);
    }
    
    void splaynode(int u)
    {
    	int x = u,tp = 0,y;
    	while(!isroot(x)) {tp++; stk[tp] = x; x = findfa(1,spl[x].fa);}
    	pushdown(x);
    	while(tp) {pushdown(stk[tp]); tp--;}
    	while(!isroot(u))
    	{
    		x = findfa(1,spl[u].fa),y = findfa(1,spl[x].fa);
    		if(!isroot(x)) {sondir(x)^sondir(u) ? rotate(u) : rotate(x);}
    		rotate(u);
    	}
    	pushup(u);
    }
    
    void access(int u)
    {
    	for(int i=0; u; i=u,u=findfa(1,spl[u].fa))
    	{
    		splaynode(u);
    		spl[u].son[1] = i; pushup(u);
    	}
    }
    
    void makeroot(int u)
    {
    	access(u); splaynode(u);
    	spl[u].rev ^= 1; swap(spl[u].son[0],spl[u].son[1]);
    }
    
    void link(int u,int v)
    {
    	makeroot(u); spl[u].fa = v;
    }
    
    void dfs(int u,int u0)
    {
    	uf2[u] = u0;
    	pushdown(u);
    	if(spl[u].son[0]) dfs(spl[u].son[0],u0);
    	if(spl[u].son[1]) dfs(spl[u].son[1],u0);
    }
    
    int main()
    {
    	scanf("%d%d",&n,&q);
    	for(int i=1; i<=n; i++) uf1[i] = uf2[i] = i;
    	for(int i=1; i<=n; i++) a[i] = read(),spl[i].val = spl[i].sum = a[i];
    	while(q--)
    	{
    		int opt; opt = read();
    		if(opt==1)
    		{
    			int u,v; u = read(),v = read();
    			int uu = findfa(0,u),vv = findfa(0,v);
    			if(uu!=vv)
    			{
    				link(findfa(1,u),findfa(1,v));
    				uf1[uu] = vv;
    			}
    			else
    			{
    				uu = findfa(1,u),vv = findfa(1,v);
    				makeroot(uu); access(vv); splaynode(vv);
    				spl[vv].val = spl[vv].sum;
    				dfs(vv,vv);
    				spl[vv].son[0] = 0;
    			}
    		}
    		else if(opt==2)
    		{
    			int u,x; u = read(),x = read(); int delta = x-a[u]; a[u] = x;
    			int uu = findfa(1,u); splaynode(uu);
    			spl[uu].val += delta; spl[uu].sum += delta;
    		}
    		else if(opt==3)
    		{
    			int u,v; u = read(),v = read();
    			int uu = findfa(1,u),vv = findfa(1,v);
    			int uuu = findfa(0,uu),vvv = findfa(0,vv);
    			if(uuu!=vvv) {puts("-1"); continue;}
    			else
    			{
    				makeroot(uu); access(vv); splaynode(vv);
    				printf("%d
    ",spl[vv].sum);
    			}
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    C Pointer-to-Function 与 C++ Pointer-to-MemberFunction 的区别
    selenium-webdriver 简单教程
    关于元素不在窗口时如何找到元素
    python-ConfigParser模块【读写配置文件】
    Python定位SVG元素
    Selenium自动化测试Python三:WebDriver进阶
    selenium之 定位以及切换frame(iframe)
    webdriver 的三种等待方式
    Selenium2+python自动化38-显式等待(WebDriverWait)
    selenium webdriver python 元素操作
  • 原文地址:https://www.cnblogs.com/suncongbo/p/11545625.html
Copyright © 2020-2023  润新知