• python 数据分析师


    简介

    越来越多的政府机关、企事业单位将选择拥有数据分析师资质的专业人士为他们的项目做出科学、合理的分析、以便正确决策;越来越多的风险投资机构把数据分析师所出具的数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的高等院校和教育机构把数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把数据分析师培训内容作为其职业生涯发展中必备的知识体系。国内数据分析行业刚兴起,企业对此类行业的人才需求相对较大,未来前景比较广阔。

    工作职责

    数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。

    互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。

    与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

    就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。

    此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。

     技能要求

    1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

    2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

    3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。

    4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。

    5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

  • 相关阅读:
    洛谷 P1226 【模板】快速幂||取余运算 题解
    洛谷 P2678 跳石头 题解
    洛谷 P2615 神奇的幻方 题解
    洛谷 P1083 借教室 题解
    洛谷 P1076 寻宝 题解
    洛谷 UVA10298 Power Strings 题解
    洛谷 P3375 【模板】KMP字符串匹配 题解
    Kafka Shell基本命令
    Mybatis与Hibernate的详细对比
    MyBatis简介
  • 原文地址:https://www.cnblogs.com/sunblingbling/p/11560633.html
Copyright © 2020-2023  润新知