Given a singly linked list, return a random node's value from the linked list. Each node must have the same probability of being chosen.
Follow up:
What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?
Example:
// Init a singly linked list [1,2,3]. ListNode head = new ListNode(1); head.next = new ListNode(2); head.next.next = new ListNode(3); Solution solution = new Solution(head); // getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning. solution.getRandom();
解法:
由于无法确定链表的长度,或者链表的长度很长,因此需要采用水塘抽样算法。由于限定了head一定存在,所以我们先让返回值res等于head的节点值,然后让curr指向head的下一个节点,定义一个变量count,初始化为1,若curr不为空我们开始循环,我们在[0, count)中取一个随机数,如果取出来0,那么我们更新res为当前的curr的节点值,然后此时count自增一,curr指向其下一个位置,这里其实相当于我们维护了一个大小为1的水塘,然后我们随机数生成为0的话,我们交换水塘中的值和当前遍历到底值,这样可以保证每个数字的概率相等,参见代码如下:
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { val = x; } * } */ public class Solution { private ListNode head; /** @param head The linked list's head. Note that the head is guaranteed to be not null, so it contains at least one node. */ public Solution(ListNode head) { this.head = head; } /** Returns a random node's value. */ public int getRandom() { int count = 1; int res = head.val; ListNode curr = head.next; while (curr != null) { if (new Random().nextInt(++count) == 0) { res = curr.val; } curr = curr.next; } return res; } } /** * Your Solution object will be instantiated and called as such: * Solution obj = new Solution(head); * int param_1 = obj.getRandom(); */