★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10576171.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Alice plays the following game, loosely based on the card game "21".
Alice starts with 0
points, and draws numbers while she has less than K
points. During each draw, she gains an integer number of points randomly from the range [1, W]
, where W
is an integer. Each draw is independent and the outcomes have equal probabilities.
Alice stops drawing numbers when she gets K
or more points. What is the probability that she has N
or less points?
Example 1:
Input: N = 10, K = 1, W = 10 Output: 1.00000 Explanation: Alice gets a single card, then stops.
Example 2:
Input: N = 6, K = 1, W = 10 Output: 0.60000 Explanation: Alice gets a single card, then stops. In 6 out of W = 10 possibilities, she is at or below N = 6 points.
Example 3:
Input: N = 21, K = 17, W = 10 Output: 0.73278
Note:
0 <= K <= N <= 10000
1 <= W <= 10000
- Answers will be accepted as correct if they are within
10^-5
of the correct answer. - The judging time limit has been reduced for this question.
爱丽丝参与一个大致基于纸牌游戏 “21点” 规则的游戏,描述如下:
爱丽丝以 0
分开始,并在她的得分少于 K
分时抽取数字。 抽取时,她从 [1, W]
的范围中随机获得一个整数作为分数进行累计,其中 W
是整数。 每次抽取都是独立的,其结果具有相同的概率。
当爱丽丝获得不少于 K
分时,她就停止抽取数字。 爱丽丝的分数不超过 N
的概率是多少?
示例 1:
输入:N = 10, K = 1, W = 10 输出:1.00000 说明:爱丽丝得到一张卡,然后停止。
示例 2:
输入:N = 6, K = 1, W = 10 输出:0.60000 说明:爱丽丝得到一张卡,然后停止。 在 W = 10 的 6 种可能下,她的得分不超过 N = 6 分。
示例 3:
输入:N = 21, K = 17, W = 10 输出:0.73278
提示:
0 <= K <= N <= 10000
1 <= W <= 10000
- 如果答案与正确答案的误差不超过
10^-5
,则该答案将被视为正确答案通过。 - 此问题的判断限制时间已经减少。
24ms
1 class Solution { 2 func new21Game(_ N: Int, _ K: Int, _ W: Int) -> Double { 3 guard N > 0 else { return 1.0 } 4 guard W >= N - K else { return 1.0 } 5 var dp = Array(repeating: 0.0, count: N+1) 6 dp[0] = 1 7 let w = Double(W) 8 var temp = 0.0 9 for i in 1...N { 10 if i <= K { 11 temp += dp[i-1] / w 12 } 13 if i > W { 14 temp -= dp[i-W-1] / w 15 } 16 dp[i] = temp 17 } 18 return dp[K...].reduce(0.0, +) 19 } 20 }
1 class Solution { 2 func new21Game(_ N: Int, _ K: Int, _ W: Int) -> Double { 3 if K == 0 || N >= (K + W) {return 1.0} 4 var dp:[Double] = [Double](repeating:0.0,count:K + W) 5 dp[0] = 1.0 6 for i in 1..<(K + W) 7 { 8 dp[i] = dp[i - 1] 9 if i <= W 10 { 11 dp[i] += dp[i - 1] / Double(W) 12 } 13 else 14 { 15 dp[i] += (dp[i - 1] - dp[i - W - 1]) / Double(W) 16 } 17 if i > K 18 { 19 dp[i] -= (dp[i - 1] - dp[K - 1]) / Double(W) 20 } 21 } 22 return dp[N] - dp[K - 1] 23 } 24 }