★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:https://www.cnblogs.com/strengthen/p/10228288.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given two non-negative integers x
and y
, an integer is powerful if it is equal to x^i + y^j
for some integers i >= 0
and j >= 0
.
Return a list of all powerful integers that have value less than or equal to bound
.
You may return the answer in any order. In your answer, each value should occur at most once.
Example 1:
Input: x = 2, y = 3, bound = 10
Output: [2,3,4,5,7,9,10]
Explanation:
2 = 2^0 + 3^0
3 = 2^1 + 3^0
4 = 2^0 + 3^1
5 = 2^1 + 3^1
7 = 2^2 + 3^1
9 = 2^3 + 3^0
10 = 2^0 + 3^2
Example 2:
Input: x = 3, y = 5, bound = 15
Output: [2,4,6,8,10,14]
Note:
1 <= x <= 100
1 <= y <= 100
0 <= bound <= 10^6
给定两个非负整数 x
和 y
,如果某一整数等于 x^i + y^j
,其中整数 i >= 0
且 j >= 0
,那么我们认为该整数是一个强整数。
返回值小于或等于 bound
的所有强整数组成的列表。
你可以按任何顺序返回答案。在你的回答中,每个值最多出现一次。
示例 1:
输入:x = 2, y = 3, bound = 10 输出:[2,3,4,5,7,9,10] 解释: 2 = 2^0 + 3^0 3 = 2^1 + 3^0 4 = 2^0 + 3^1 5 = 2^1 + 3^1 7 = 2^2 + 3^1 9 = 2^3 + 3^0 10 = 2^0 + 3^2
示例 2:
输入:x = 3, y = 5, bound = 15 输出:[2,4,6,8,10,14]
提示:
1 <= x <= 100
1 <= y <= 100
0 <= bound <= 10^6
8ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 var xs:[Int] = [1] 4 var ys:[Int] = [1] 5 6 if x > 1 7 { 8 var p:Int = x 9 while(p <= bound) 10 { 11 xs.append(p) 12 p *= x 13 } 14 } 15 16 if y > 1 17 { 18 var p:Int = y 19 while(p <= bound) 20 { 21 ys.append(p) 22 p *= y 23 } 24 } 25 26 var s:Set<Int> = Set<Int>() 27 for xx in xs 28 { 29 for yy in ys 30 { 31 if xx + yy <= bound 32 { 33 s.insert(xx + yy) 34 } 35 } 36 } 37 return Array(s) 38 } 39 }
8ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 var res = [Int]() 4 var xx = [Int]() 5 var yy = [Int]() 6 if x == 0 { 7 xx = [0] 8 } else if x == 1 { 9 xx = [1] 10 } else { 11 xx.append(1) 12 var tmp = x 13 while tmp <= bound { 14 xx.append(tmp) 15 tmp *= x 16 } 17 } 18 19 if y == 0 { 20 yy = [0] 21 } else if y == 1 { 22 yy = [1] 23 } else { 24 yy.append(1) 25 var tmp = y 26 while tmp <= bound { 27 yy.append(tmp) 28 tmp *= y 29 } 30 } 31 32 var tmp = 0 33 34 for i in xx { 35 for u in yy { 36 tmp = i + u 37 if !res.contains(tmp) && tmp <= bound { 38 res.append(tmp) 39 } 40 if tmp > bound { 41 break 42 } 43 } 44 } 45 46 return res 47 } 48 }
16ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 var result = [Int]() 4 helper(x, y, 0, 0, bound, &result) 5 return result 6 } 7 8 func helper(_ x: Int, _ y: Int, _ powerX: Int, _ powerY: Int, _ bound: Int, _ result :inout [Int]) { 9 let sum = Int(pow(Double(x), Double(powerX)) + pow(Double(y), Double(powerY))) 10 if sum > bound { 11 return 12 } 13 14 if !result.contains(sum) { 15 result.append(sum) 16 } 17 18 if x > 1 { 19 helper(x, y, powerX + 1, powerY, bound, &result) 20 } 21 22 if y > 1 { 23 helper(x, y, powerX, powerY + 1, bound, &result) 24 } 25 } 26 }
20ms
1 class Solution { 2 func powerfulIntegers(_ x: Int, _ y: Int, _ bound: Int) -> [Int] { 3 if (x <= 0 && y <= 0) || (x == 1 && y == 0) || (x == 0 && y == 1) || (x == 1 && y == 1) { 4 let a = Int(pow(Double(x), 0.0) + pow(Double(y), 0.0)) 5 let b = Int(pow(Double(x), 1.0) + pow(Double(y), 1.0)) 6 let c = Int(pow(Double(x), 1.0) + pow(Double(y), 0.0)) 7 let d = Int(pow(Double(x), 0.0) + pow(Double(y), 1.0)) 8 var s = Set<Int>() 9 s.insert(a) 10 s.insert(b) 11 s.insert(c) 12 s.insert(d) 13 var arr = [Int]() 14 for n in s { 15 if n <= bound { 16 arr.append(n) 17 } 18 } 19 return arr 20 } 21 var s = Set<Int>() 22 var p1 = 0 23 var sum = 0 24 var count = 0 25 out: while true { 26 var p2 = 0 27 while sum <= bound { 28 sum = Int(pow(Double(x), Double(p1))) + Int(pow(Double(y), Double(p2))) 29 p2 += 1 30 if sum <= bound { 31 s.insert(sum) 32 } 33 count += 1 34 if count > 3000 { 35 break out 36 } 37 } 38 p1 += 1 39 sum = Int(pow(Double(x), Double(p1))) + Int(pow(Double(y), Double(0))) 40 if sum <= bound { 41 42 } else { 43 break 44 } 45 } 46 return Array(s) 47 } 48 }