• [Poi2010]Bridges 最大流+二分答案 判定混合图欧拉回路


    https://darkbzoj.cf/problem/2095

    bzoj 相同的题挂了,这个oj可以写。

    题目就是要我们找一条欧拉回路(每个桥经过一次就好,不管方向),使得这条回路上权值最大的尽量小
    二分答案是显然的,关键是如何check

    每次二分一个mid,大于mid的边都不选,那么就有一些方向不能走了,原图就是一个混合图,问题就转化成了一个混合图判定欧拉回路问题(如果有一条边两个方向都不能走,那肯定不存在欧拉回路)
    对于那些单向边,直接统计度数就可以。对于两个方向都可以走的边,先随便定一个方向,假设是u->v,统计度数,并且在网络图里加一条边u->v,流量为1。
    最后遍历所有的点u,如果入度与出度之差为奇数,显然无解(某一次进去就出不来了,或者出来就进不去了)
    如果u出度大于入度,那么加边S->u,流量(out-in)/2   就是要调整多少条边 
    如果u入度大于出度,那么加边u->T,流量(in-out)/2
    最后满流才有欧拉回路

    这样做的正确性:
    双向边是随意定向的,因此这个定向可能是错的,才会导致一些点出度和入度不相等(如果欧拉回路本来存在的话)。如果把一条原本是v->u的边定成了u->v,那么u就多了出度,v就少了入度。要修正这个错误,就需要让u->v边反向,达到u出度-1,v入度+1的目的。也就是S->u->v->T这条流量的含义。当然反过来建也是可以的:S->v->u->T
    如果最后不能满流,说明有一些点的入度没办法等于出度,那肯定不存在欧拉回路

    AC代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=4e3+20,mod=1e9+7,inf=0x3f3f3f3f;
    typedef long long ll;
    struct edge
    {
        int from,to,c,f;
        edge(int u,int v,int c,int f):from(u),to(v),c(c),f(f) {}
    };
    int n,m;
    vector<edge> edges;
    vector<int> g[maxn];
    int d[maxn];//从起点到i的距离
    int cur[maxn];//当前弧下标
    struct bian
    {
        int a,b,c,d;
    }qiao[maxn];
    int in[maxn],out[maxn];
    void init()
    {
        for(int i=0; i<=n+2; i++) g[i].clear(); //要把源点汇点算进去!!
        edges.clear();
    }
    void addedge(int from,int to,int c) //加边 支持重边
    {
        edges.push_back(edge(from,to,c,0));
        edges.push_back(edge(to,from,0,0));
        int siz=edges.size();
        g[from].push_back(siz-2);
        g[to].push_back(siz-1);
    }
    int bfs(int s,int t) //构造一次层次图
    {
        memset(d,-1,sizeof(d));
        queue<int> q;
        q.push(s);
        d[s]=0;
        while(!q.empty())
        {
            int x=q.front();q.pop();
            for(int i=0;i<g[x].size();i++)
            {
                edge &e=edges[g[x][i]];
                if(d[e.to]<0&&e.f<e.c) //d[e.to]=-1表示没访问过
                {
                    d[e.to]=d[x]+1;
                    q.push(e.to);
                }
            }
        }
        return d[t];
    }
    int dfs(int x,int a,int t) // a表示x点能接收的量
    {
        if(x==t||a==0)return a;
        int flow=0,f;//flow总的增量 f一条增广路的增量
        for(int &i=cur[x];i<g[x].size();i++)//cur[i] &引用修改其值 从上次考虑的弧
        {
            edge &e=edges[g[x][i]];
            if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.c-e.f),t))>0)    //按照层次图增广 满足容量限制
            {
                e.f+=f;
                edges[g[x][i]^1].f-=f;  //修改流量
                flow+=f;
                a-=f;
                if(a==0) break;
            }
        }
        return flow;
    }
    int maxflow(int s,int t)
    {
        int flow=0;
        while(bfs(s,t)!=-1) //等于-1代表构造层次图失败 结束
        {
            memset(cur,0,sizeof(cur));
            flow+=dfs(s,inf,t);
        }
        return flow;
    }
    int check(int mid)
    {
        memset(in,0,sizeof(in));
        memset(out,0,sizeof(out));
        init();
        for(int i=0;i<m;i++)
        {
            if(qiao[i].c<=mid&&qiao[i].d<=mid)
            {
                addedge(qiao[i].a,qiao[i].b,1);
                in[qiao[i].b]++,out[qiao[i].a]++;
            }
            else if(qiao[i].c<=mid)
                in[qiao[i].b]++,out[qiao[i].a]++;
            else if(qiao[i].d<=mid)
                in[qiao[i].a]++,out[qiao[i].b]++;
            else
                return 0;
        }
        int sum=0;
        for(int i=1;i<=n;i++)
        {
            int temp=out[i]-in[i];
            if(temp&1)
                return 0;
            if(temp>0)
                addedge(n+1,i,temp/2),sum+=temp/2;
            if(temp<0)
                addedge(i,n+2,-temp/2);
        }
        return sum==maxflow(n+1,n+2);
    }
    int main()
    {
        scanf("%d%d",&n,&m);
        int u,v,c,f;
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d%d",&u,&v,&c,&f);
            qiao[i]={u,v,c,f};
        }
        int l=1,r=1000,ans=-1;
        while(l<=r)
        {
            int mid=(l+r)/2;
            if(check(mid))
            {
                ans=mid;
                r=mid-1;
            }
            else
                l=mid+1;
        }
        if(ans==-1)
            printf("NIE
    ");
        else
            printf("%d
    ",ans);
    }
  • 相关阅读:
    匿名对象
    封装性
    1 Django初探
    8 定制10MINs 3
    7 定制10MINs首页2
    5-1 练习css 总结
    6.定制10MINS首页1
    3-1 练习 HTML 总结
    5. css定位 居中
    4 CSS的20/80个知识点
  • 原文地址:https://www.cnblogs.com/stranger-/p/10519468.html
Copyright © 2020-2023  润新知