• 【洛谷P3242】接水果


    题目

    题目链接:https://www.luogu.com.cn/problem/P3242
    风见幽香非常喜欢玩一个叫做 osu! 的游戏,其中她最喜欢玩的模式就是接水果。由于她已经 DT FC 了 The big black,她觉得这个游戏太简单了,于是发明了一个更加难的版本。
    首先有一个地图,是一棵由 (n) 个顶点,(n-1) 条边组成的树。
    这颗树上有 (p) 个盘子,每个盘子实际上是一条路径,并且每个盘子还有一个权值。第 (i) 个盘子就是顶点 (a_i) 到顶点 (b_i) 的路径(由于是树,所以从 (a_i)(b_i) 的路径是唯一的),权值为 (c_i)
    接下来依次会有 (q) 个水果掉下来,每个水果本质上也是一条路径,第 (i) 个水果是从顶点 (u_i) 到顶点 (v_i) 的路径。
    幽香每次需要选择一个盘子去接当前的水果:一个盘子能接住一个水果,当且仅当盘子的路径是水果的路径的子路径。这里规定:从 (a)(b) 的路径与从 (b)(a) 的路径是同一条路径。
    当然为了提高难度,对于第 (i) 个水果,你需要选择能接住它的所有盘子中,权值第 (k_i) 小的那个盘子,每个盘子可重复使用(没有使用次数的上限:一个盘子接完一个水果后,后面还可继续接其他水果,只要它是水果路径的子路径)。幽香认为这个游戏很难,你能轻松解决给她看吗?
    (n,p,qleq 4 imes 10^4)

    思路

    (L_x= ext{dfn}_x,R_x= ext{dfn}_x+ ext{siz}_x-1)
    假设路径 (a o b) 包含了路径 (c o d)(其中 (L_a<L_b,L_c<L_d)),考虑他们之间的关系:

    • 如果 (a) 不是 (b) 的祖先,那么 (c) 一定在 (a) 的子树内,(d) 一定在 (c) 的子树内。
      (L_aleq L_cleq R_a,L_bleq L_dleq R_b)
    • 如果 (a)(b) 的祖先,记 (p)(a o b) 路径上 (a) 的儿子,那么 (c) 一定不在 (p) 的子树内,(d) 一定在 (c) 的子树内。
      (1leq L_c<L_p,L_bleq L_dleq R_b)(R_p<L_cleq n,L_bleq L_dleq R_b)

    把不等关系放在一个平面上,那么也就是给出若干个矩形以及若干个点,需要求每一个点被覆盖的矩形中,权值第 (k) 小的那个矩形。
    显然需要整体二分或者树套树。我选择整体二分。剩余的就是板子了。扫描线 + 树状数组即可。
    时间复杂度 (O(mlog^2 n))

    代码

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N=160010,LG=15;
    int n,m,Q,tot,head[N],L[N],R[N],num[N],rk[N],ans[N],dep[N],f[N][LG+1];
    
    struct edge
    {
    	int next,to;
    }e[N];
    
    void add(int from,int to)
    {
    	e[++tot]=(edge){head[from],to};
    	head[from]=tot;
    }
    
    struct node1
    {
    	int x,l,r,v,id;
    }a[N],c[N];
    
    struct node2
    {
    	int x,y,k,id;
    }b[N],d[N];
    
    bool cmp1(node1 x,node1 y)
    {
    	return num[x.id]<num[y.id];
    }
    
    bool cmp2(node1 x,node1 y)
    {
    	return x.x<y.x;
    }
    
    bool cmp3(node2 x,node2 y)
    {
    	return x.x<y.x;
    }
    
    void dfs(int x,int fa)
    {
    	L[x]=++tot; dep[x]=dep[fa]+1; f[x][0]=fa;
    	for (int i=1;i<=LG;i++)
    		f[x][i]=f[f[x][i-1]][i-1];
    	for (int i=head[x];~i;i=e[i].next)
    	{
    		int v=e[i].to;
    		if (v!=fa) dfs(v,x);
    	}
    	R[x]=tot;
    }
    
    int findson(int x,int y)
    {
    	for (int i=LG;i>=0;i--)
    		if (dep[f[y][i]]>dep[x]) y=f[y][i];
    	return y;
    }
    
    void work(int x,int y,int xx,int yy,int id)
    {
    	a[++tot]=(node1){x,y,yy,1,id};
    	a[++tot]=(node1){xx+1,y,yy,-1,id};
    }
    
    struct BIT
    {
    	int c[N];
    	
    	void add(int x,int v)
    	{
    		for (int i=x;i<=n;i+=i&-i)
    			c[i]+=v;
    	}
    	
    	int query(int x)
    	{
    		int res=0;
    		for (int i=x;i;i-=i&-i)
    			res+=c[i];
    		return res;
    	}
    }bit;
    
    void solve(int ql,int qr,int l,int r,int pl,int pr)
    {
    	if (l==r)
    	{
    		for (int i=ql;i<=qr;i++)
    			ans[b[i].id]=num[a[pl].id];
    		return;
    	}
    	int mid=(l+r)>>1,qql=ql-1,qqr=qr+1,ppl=pl-1,ppr=pr+1,j=pl;
    	for (int i=ql;i<=qr;i++)
    	{
    		for (;j<=pr && a[j].x<=b[i].x;j++)
    			if (rk[a[j].id]<=mid && a[j].l<=a[j].r+1)
    				bit.add(a[j].l,a[j].v),bit.add(a[j].r+1,-a[j].v);
    		int k=bit.query(b[i].y);
    		if (k>=b[i].k) d[++qql]=b[i];
    			else d[--qqr]=b[i],d[qqr].k-=k;
    	}
    	for (;j<=pr;j++)
    		if (rk[a[j].id]<=mid && a[j].l<=a[j].r)
    			bit.add(a[j].l,a[j].v),bit.add(a[j].r+1,-a[j].v);
    	for (int i=pl;i<=pr;i++)
    		if (rk[a[i].id]<=mid) c[++ppl]=a[i];
    			else c[--ppr]=a[i];
    	for (int i=ql;i<=qql;i++) b[i]=d[i];
    	for (int i=qr;i>=qqr;i--) b[i]=d[qr-i+qqr];
    	for (int i=pl;i<=ppl;i++) a[i]=c[i];
    	for (int i=pr;i>=ppr;i--) a[i]=c[pr-i+ppr];
    	solve(ql,qql,l,mid,pl,ppl);
    	solve(qqr,qr,mid+1,r,ppr,pr); 
    }
    
    int main()
    {
    	memset(head,-1,sizeof(head));
    	scanf("%d%d%d",&n,&m,&Q);
    	for (int i=1,x,y;i<n;i++)
    	{
    		scanf("%d%d",&x,&y);
    		add(x,y); add(y,x);
    	}
    	tot=0; dfs(1,0); tot=0;
    	for (int i=1,x,y;i<=m;i++)
    	{
    		scanf("%d%d%d",&x,&y,&num[i]);
    		if (L[x]>L[y]) swap(x,y);
    		if (R[x]>=R[y])
    		{
    			int p=findson(x,y);
    			work(1,L[y],L[p]-1,R[y],i); work(L[y],R[p]+1,R[y],n,i);
    		}
    		else work(L[x],L[y],R[x],R[y],i);
    	}
    	sort(a+1,a+1+tot,cmp1);
    	for (int i=1,j=1;i<=tot;i++)
    		if (!rk[a[i].id]) rk[a[i].id]=j++;
    	sort(a+1,a+1+tot,cmp2);
    	for (int i=1;i<=Q;i++)
    	{
    		scanf("%d%d%d",&b[i].x,&b[i].y,&b[i].k);
    		b[i].id=i; b[i].x=L[b[i].x]; b[i].y=L[b[i].y];
    		if (b[i].x>b[i].y) swap(b[i].x,b[i].y);
    	}
    	sort(b+1,b+1+Q,cmp3);
    	solve(1,Q,1,m,1,tot);
    	for (int i=1;i<=Q;i++)
    		cout<<ans[i]<<"
    ";
    	return 0;
    }
    
  • 相关阅读:
    连通域标记
    qt&gdal
    gdal vs2013编译
    java配置
    windows下面安装Python和pip
    mfc operator new”: 没有重载函数接受 3 个参数
    std::min&std::max与mfc冲突问题
    qt中vtk易出现错误
    cmake构建qt工程
    Webstorm补丁
  • 原文地址:https://www.cnblogs.com/stoorz/p/14829767.html
Copyright © 2020-2023  润新知