2020牛客暑期多校 10J - Identical Trees
题意
给定两棵有根节点的同构树,仅编号存在不同
问至少修改多少个节点的编号能使得两棵树相同
限制
(1leq nleq500)
思路
明显,我们需要先检查对应的子树是否匹配(即子树同构),再去计算不同编号的节点数量
所以首先要对两棵树做一遍树上hash,求出每个节点对应的子树的hash值便于判断是否同构
通过链式前向星建图,可以获取每个节点的子节点编号及位置
同时搜索这两棵树,从两根节点开始(O(n^2))枚举当前两节点的子节点,递归判断两子节点对应的子树是否也是同构树
如果是,则递归来获取匹配后至少要更改多少次编号才能让两棵子树相同
将获得的值作为边权,连接枚举的两个子节点,进行二分图匹配
由于要求出最小的交换次数,所以要使得能够直接匹配上的节点尽可能多
采用网络流解决二分图匹配问题,由于本题存在边权,且又限制两棵树上的某对节点只能匹配一次(流量限制固定)
所以最终选取最小费用最大流解决该问题
由于流量固定(所有节点必须匹配),所以模板MCMF会选择费用少的边去流
而我们希望直接匹配上的节点尽可能多,所以需要将费用取负,最后将节点数减去MCMF的费用即可作为答案
(由于每一次递归就需要进行一次网络流,所以最好写成结构体,或者手写栈空间来保证不会冲突)
代码
(12ms/1000ms)
/*
* Author : StelaYuri
* Language : GNU G++ 14
*/
//#pragma comment(linker,"/STACK:1024000000,1024000000")
//#pragma GCC optimize(3)
#include<bits/stdc++.h>
//#include<unordered_map>
//#include<ext/pb_ds/assoc_container.hpp>
//#include<ext/pb_ds/hash_policy.hpp>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define repp(i,a,b) for(int i=a;i<b;i++)
#define per(i,a,b) for(int i=a;i>=b;i--)
#define perr(i,a,b) for(int i=a;i>b;i--)
#define pb push_back
#define eb emplace_back
#define mst(a,b) memset(a,b,sizeof(a))
using namespace std;
//using namespace __gnu_pbds;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const double angcst=PI/180.0;
const ll mod=998244353;
ll max_3(ll a,ll b,ll c){if(a>b&&a>c)return a;if(b>c)return b;return c;}
ll min_3(ll a,ll b,ll c){if(a<b&&a<c)return a;if(b<c)return b;return c;}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;a=(a+a)%mod;b>>=1;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}
const int maxn=1010,N=510,maxm=250000;
struct MCMF {
struct E {
int from, to, cap, v;
E() {}
E(int f, int t, int cap, int v) : from(f), to(t), cap(cap), v(v) {}
};
int n, m, s, t;
vector<E> edges;
vector<int> G[maxn];
bool inq[maxn];
int dis[maxn], pre[maxn], a[maxn];
void init(int _n, int _s, int _t) {
n = _n; s = _s; t = _t;
for (int i = 0; i <= n; i++)
G[i].clear();
edges.clear();
m = 0;
}
void addedge(int from, int to, int cap, int cost) {
edges.emplace_back(from, to, cap, cost);
edges.emplace_back(to, from, 0, -cost);
G[from].emplace_back(m++);
G[to].emplace_back(m++);
}
bool spfa() {
for (int i = 0; i <= n; i++) {
dis[i] = INF;
pre[i] = -1;
inq[i] = false;
}
dis[s] = 0, a[s] = INF, inq[s] = true;
queue<int> Q; Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = false;
for (int& idx: G[u]) {
E& e = edges[idx];
if (e.cap && dis[e.to] > dis[u] + e.v) {
dis[e.to] = dis[u] + e.v;
pre[e.to] = idx;
a[e.to] = min(a[u], e.cap);
if (!inq[e.to]) {
inq[e.to] = true;
Q.push(e.to);
}
}
}
}
return pre[t] != -1;
}
int solve() {
int flow = 0, cost = 0;
while (spfa()) {
flow += a[t];
cost += a[t]*dis[t];
int u = t;
while (u != s) {
edges[pre[u]].cap -= a[t];
edges[pre[u] ^ 1].cap += a[t];
u = edges[pre[u]].from;
}
}
return cost;
}
};
struct node{
int to,next;
}e[N],e2[N];
int root1,root2,cnt1,head1[N],cntt1[N],cnt2,head2[N],cntt2[N];
ull hashnum[N],hashnum2[N]; //两棵树每个节点对应子树的hash值
void addedge1(int x,int y)
{
e[cnt1].to=y;
e[cnt1].next=head1[x];
head1[x]=cnt1++;
cntt1[x]++;
}
void addedge2(int x,int y)
{
e2[cnt2].to=y;
e2[cnt2].next=head2[x];
head2[x]=cnt2++;
cntt2[x]++;
}
ull f_hash(int x)
{
vector<ull>v;
for(int i=head1[x];~i;i=e[i].next)
v.push_back(f_hash(e[i].to));
sort(v.begin(),v.end());
ull h=28;
for(ull i:v)
h=h*(ull)13131+i;
hashnum[x]=h;
return h;
}
ull f_hash2(int x)
{
vector<ull>v;
for(int i=head2[x];~i;i=e2[i].next)
v.push_back(f_hash2(e2[i].to));
sort(v.begin(),v.end());
ull h=28;
for(ull i:v)
h=h*(ull)13131+i;
hashnum2[x]=h;
return h;
}
int match(int p1,int p2)
{
if(head1[p1]==-1&&head2[p2]==-1)
return (p1==p2?-1:0); //假如这两个节点都没有子树,则直接返回两节点编号是否相同
int bas=cntt1[p1]+cntt2[p2];
MCMF f;
f.init(bas+2,bas+1,bas+2); //建立最小费用最大流
for(int i=head1[p1],ii=0;~i;i=e[i].next,ii++)
{
f.addedge(f.s,ii,1,0); //源点向树1上节点的子节点连边,流量为1花费为0
for(int j=head2[p2],jj=0;~j;j=e2[j].next,jj++)
{
if(hashnum[e[i].to]==hashnum2[e2[j].to]) //如果两棵树同构
f.addedge(ii,jj+cntt1[p1],1,match(e[i].to,e2[j].to)); //建立流量为1花费为子节点匹配结果的边
}
}
for(int j=head2[p2],jj=0;~j;j=e2[j].next,jj++)
f.addedge(jj+cntt1[p1],f.t,1,0); //树2上节点的子节点向汇点连边,流量为1花费为0
return f.solve()+(p1==p2?-1:0); //这里还得加上对p1和p2编号的判断
}
void solve()
{
mst(head1,-1);
mst(head2,-1);
int n,d;
cin>>n;
rep(i,1,n)
{
cin>>d;
if(d) addedge1(d,i);
else root1=i;
}
rep(i,1,n)
{
cin>>d;
if(d) addedge2(d,i);
else root2=i;
}
f_hash(root1);
f_hash2(root2); //先做两遍树上哈希
cout<<n+match(root1,root2)<<'
'; //匹配得到的值为负数,表示能够直接匹配的最大对数
}
int main()
{
closeSync;
solve();
return 0;
}