• 【BZOJ3684】—大朋友和多叉树(NTT+拉格朗日反演)


    传送门


    DD的生成函数C(x)=iDxiC(x)=sum_{iin D}x^i

    则神犇多叉树的OGF:f(x)=iDf(x)i+x=C(f(x))xOGF:f(x)=sum_{iin D}f(x)^i+x=C(f(x))-x
    那么有C(f(x))f(x)=xC(f(x))-f(x)=x

    考虑最后要求的是ff的第ss

    拉格朗日反演:

    若有f(x),g(x)f(x),g(x)满足:

    f(g(x))=xf(g(x))=x

    那么有

    g(f(x))=xg(f(x))=x

    f,gf,g互为复合逆

    且有
    [xn]f(x)=1n[x1]1g(x)n=1n[xn1](xg(x))n [x^n]f(x)=frac 1 n[x^{-1}]frac{1}{g(x)^n} \ =frac{1}{n}[x^{n-1}](frac{x}{g(x)}) ^n


    这里相当于设G(x)=C(x)xG(x)=C(x)-x
    那么就是G(f(x))=xG(f(x))=x

    那么最后求的就是1s[xs1](xG(x))sfrac 1 s[x^{s-1}](frac x {G(x)})^s

    由于C(x)C(x)最低项为x2(d2)x^2(dge2)
    所以G(x)G(x)没有常数项

    就可以把上面的xx消去
    然后多项式快速幂就可以了

    #include<bits/stdc++.h>
    using namespace std;
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0,f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    #define re register
    #define pb push_back
    #define cs const
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    #define poly vector<int>
    #define bg begin
    cs int mod=950009857,G=7;
    inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
    inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
    inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){
    	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
    }
    inline void chemx(int &a,int b){a<b?a=b:0;}
    inline void chemn(int &a,int b){a>b?a=b:0;}
    cs int N=400005,C=21;
    poly w[C+1];
    int rev[N],inv[N];
    inline void init_w(){
    	for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
    	w[C][0]=1;
    	int wn=ksm(G,(mod-1)/(1<<C));
    	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
    	for(int i=C-1;i;i--)
    	for(int j=0;j<(1<<(i-1));j++)
    	w[i][j]=w[i+1][j<<1];
    }
    inline void init_inv(){
    	inv[0]=inv[1]=1;
    	for(int i=2;i<N;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
    }
    inline void init_rev(int lim){
    	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline void ntt(poly &f,int lim,int kd){
    	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    	for(int a0,a1,mid=1,l=1;mid<lim;mid<<=1,l++)
    	for(int i=0;i<lim;i+=(mid<<1))
    	for(int j=0;j<mid;j++)
    	a0=f[i+j],a1=mul(w[l][j],f[i+j+mid]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    	if(kd==-1){reverse(f.bg()+1,f.bg()+lim);for(int i=0;i<lim;i++)Mul(f[i],inv[lim]);}
    }
    inline poly operator +(poly a,cs poly &b){
    	if(a.size()<b.size())a.resize(b.size());
    	for(int i=0;i<b.size();i++)Add(a[i],b[i]);
    	return a;
    }
    inline poly operator -(poly a,cs poly &b){
    	if(a.size()<b.size())a.resize(b.size());
    	for(int i=0;i<b.size();i++)Dec(a[i],b[i]);
    	return a;
    }
    inline poly operator *(poly a,int b){
    	for(int i=0;i<a.size();i++)Mul(a[i],b);
    	return a;
    }
    inline poly operator *(poly a,poly b){
    	int deg=a.size()+b.size()-1,lim=1;
    	if(deg<=128){
    		poly c(deg,0);
    		for(int i=0;i<a.size();i++)
    		for(int j=0;j<b.size();j++)
    		Add(c[i+j],mul(a[i],b[j]));
    		return c;
    	}
    	while(lim<deg)lim<<=1;
    	init_rev(lim);
    	a.resize(lim),b.resize(lim);
    	ntt(a,lim,1),ntt(b,lim,1);
    	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
    	ntt(a,lim,-1),a.resize(deg);
    	return a;
    }
    inline poly Inv(cs poly &a,int deg){
    	poly b(1,ksm(a[0],mod-2)),c;
    	for(int lim=4;lim<(deg<<2);lim<<=1){
    		c=a,c.resize(lim>>1);
    		init_rev(lim);
    		b.resize(lim),ntt(b,lim,1);
    		c.resize(lim),ntt(c,lim,1);
    		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
    		ntt(b,lim,-1),b.resize(lim>>1);
    	}b.resize(deg);return b;
    }
    inline poly integ(poly f){
    	for(int i=0;i<f.size()-1;i++)f[i]=mul(f[i+1],i+1);
    	f.pop_back();return f;
    }
    inline poly deriv(poly f){
    	f.pb(0);
    	for(int i=f.size()-1;i;i--)f[i]=mul(f[i-1],inv[i]);
    	f[0]=0;return f;
    }
    inline poly Ln(poly f,int deg){
    	f=deriv(integ(f)*Inv(f,deg));f.resize(deg);
    	return f;
    }
    inline poly exp(poly b,int deg){
    	poly a(1,1),c;
    	for(int lim=2;lim<(deg<<1);lim<<=1){
    		c=Ln(a,lim),c=b-c,c[0]++;
    		a=a*c,a.resize(lim);
    	}a.resize(deg);return a;
    }
    inline poly ksm(poly a,int b,int deg){
    	a=exp(Ln(a,deg)*b,deg);return a;
    }
    int s,m;
    poly g;
    int main(){
    	#ifdef Stargazer
    	freopen("lx.cpp","r",stdin);
    	#endif
    	init_w(),init_inv();
    	s=read(),m=read();
    	g.resize(s);
    	for(int i=1;i<=m;i++)g[read()-1]=mod-1;
    	g[0]++,g=ksm(Inv(g,s),s,s);
    	cout<<mul(g[s-1],ksm(s,mod-2));
    }
    
  • 相关阅读:
    docker技术快速实现前后端项目的集群化⑥基于haproxy创建pxc集群的负载均衡
    docker技术快速实现前后端项目的集群化⑤docker环境下搭建percona-mysql的pxc集群
    docker技术快速实现前后端项目的集群化④linux基础防火墙命令和docker的安装部署
    docker技术快速实现前后端项目的集群化③renren-fast前端nodejs环境在windows下的搭建
    docker技术快速实现前后端项目的集群化②renren-fast后端java环境在eclipse中windows环境的搭建
    docker技术快速实现前后端项目的集群化①java项目在windows下maven环境的搭建
    docker技术快速实现前后端项目的集群化概述
    基于centos的docker基础镜像制作有jdk1.8的java环境镜像
    docker容器的ubuntu系统中设置apt-get代理和apt-get源
    centos7环境下php网站通过webshell安全扫描工具对系统做检测
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328666.html
Copyright © 2020-2023  润新知