• 【洛谷 P5396】【模板】—第二类斯特林数·列(生成函数+倍增+NTT)


    传送门

    斯特林数学习笔记


    考虑构建列的生成函数
    Fn=i=0S(i,n)xiF_n=sum_{i=0}^{infty}S(i,n)x^i

    由第二类斯特林数递推式
    S(i,j)=S(i1,j1)+jS(i1,j)S(i,j)=S(i-1,j-1)+j*S(i-1,j)

    Fn=xFn1+xjFnF_n=xF_{n-1}+x*j*F_{n}
    就是Fn=x1xjFn1F_n=frac{x}{1-x*j}F_{n-1}

    Fn=xni=1n(1ix)F_n=frac{x^n}{prod_{i=1}^{n}(1-ix)}

    g(x)=i=1n(1ix)g(x)=prod_{i=1}^n(1-ix)

    这是一个nn次多项式

    gR(x)=xni=1n(1ix)=i=1n(xi)=(x1)n=xn+1xg^R(x)=x^nprod_{i=1}^n(1-frac i x)=prod_{i=1}^{n}(x-i)=(x-1)^{underline n}=frac{x^{underline {n+1}}}{x}

    xnx^{underline n}这样一个东西可以倍增O(nlogn)O(nlogn)
    然后翻转回来求个逆就完了

    不过翻转操作好像不能直接对FnF_n做,好像是因为模意义下求逆之后并不清楚FF是个几次多项式(雾)

    #include<bits/stdc++.h>
    using namespace std;
    #define gc getchar
    inline int read(){
    	char ch=gc();
    	int res=0,f=1;
    	while(!isdigit(ch))f^=ch=='-',ch=gc();
    	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    	return f?res:-res;
    }
    #define re register
    #define pb push_back
    #define cs const
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define ll long long
    #define poly vector<int>
    #define bg begin
    cs int mod=167772161,G=3;
    inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
    inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
    inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
    inline void Mul(int &a,int b){a=mul(a,b);}
    inline int ksm(int a,int b,int res=1){
    	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
    }
    inline void chemx(int &a,int b){a<b?a=b:0;}
    inline void chemn(int &a,int b){a>b?a=b:0;}
    cs int N=(1<<20)|5,C=20;
    poly w[C+1];
    int rev[N],fac[N],ifac[N],inv[N];
    inline void init(cs int len=N-5){
    	fac[0]=ifac[0]=inv[0]=inv[1]=1;
    	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
    	ifac[len]=ksm(fac[len],mod-2);
    	for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
    	for(int i=2;i<=len;i++)inv[i]=mul(mod-mod/i,inv[mod%i]);
    }
    inline void init_w(){
    	for(int i=1;i<=C;i++)w[i].resize(1<<(i-1));
    	int wn=ksm(G,(mod-1)/(1<<C));
    	w[C][0]=1;
    	for(int i=1;i<(1<<(C-1));i++)w[C][i]=mul(w[C][i-1],wn);
    	for(int i=C-1;i;i--)
    	for(int j=0;j<(1<<(i-1));j++)
    	w[i][j]=w[i+1][j<<1];
    }
    inline void init_rev(int lim){
    	for(int i=0;i<lim;i++)rev[i]=(rev[i>>1]>>1)|((i&1)*(lim>>1));
    }
    inline void ntt(poly &f,int lim,int kd){
    	for(int i=0;i<lim;i++)if(i>rev[i])swap(f[i],f[rev[i]]);
    	for(int a0,a1,l=1,mid=1;mid<lim;mid<<=1,l++)
    	for(int i=0;i<lim;i+=(mid<<1))
    	for(int j=0;j<mid;j++)
    	a0=f[i+j],a1=mul(w[l][j],f[i+j+mid]),f[i+j]=add(a0,a1),f[i+j+mid]=dec(a0,a1);
    	if(kd==-1){
    		reverse(f.bg()+1,f.bg()+lim);
    		for(int i=0;i<lim;i++)Mul(f[i],inv[lim]);
    	}
    }
    inline poly operator *(poly a,int b){
    	for(int i=0;i<a.size();i++)Mul(a[i],b);
    	return a;
    }
    inline poly operator *(poly a,poly b){
    	int deg=a.size()+b.size()-1,lim=1;
    	if(deg<=64){
    		poly c(deg,0);
    		for(int i=0;i<a.size();i++)
    		for(int j=0;j<b.size();j++)
    		Add(c[i+j],mul(a[i],b[j]));
    		return c;
    	}
    	while(lim<deg)lim<<=1;
    	init_rev(lim);
    	a.resize(lim),ntt(a,lim,1);
    	b.resize(lim),ntt(b,lim,1);
    	for(int i=0;i<lim;i++)Mul(a[i],b[i]);
    	ntt(a,lim,-1),a.resize(deg);
    	return a;
    }
    inline poly Inv(poly a,int deg){
    	poly b(1,ksm(a[0],mod-2)),c;
    	for(int lim=4;lim<(deg<<2);lim<<=1){
    		c=a,c.resize(lim>>1);
    		init_rev(lim);
    		c.resize(lim),ntt(c,lim,1);
    		b.resize(lim),ntt(b,lim,1);
    		for(int i=0;i<lim;i++)Mul(b[i],dec(2,mul(b[i],c[i])));
    		ntt(b,lim,-1),b.resize(lim>>1);
    	}b.resize(deg);return b;
    }
    inline poly calc_down(int n){
    	poly res;
    	if(n==1){res.pb(0),res.pb(1);return res;}
    	if(n&1){
    		res=calc_down(n-1);
    		res.pb(0);
    		for(int i=res.size()-1;i;i--)res[i]=add(mul(res[i],dec(1,n)),res[i-1]);
    		res[0]=0;return res;
    	}
    	int mid=n>>1;
    	poly a=calc_down(mid),b(mid+1),c(mid+1);
    	for(int i=0;i<=mid;i++)c[i]=mul(a[i],fac[i]);
    	for(int i=0,t=dec(0,mid),mt=1;i<=mid;i++,Mul(mt,t))b[i]=mul(mt,ifac[i]);
    	reverse(b.bg(),b.bg()+mid+1);
    	b=b*c;for(int i=0;i<=mid;i++)b[i]=mul(b[i+mid],ifac[i]);
    	b.resize(mid+1),res=a*b;return res;
    }
    poly f,g;
    int n,k;
    int main(){
    	init_w(),init();
    	n=read(),k=read();
    	f=calc_down(k+1);
    	for(int i=0;i<f.size()-1;i++)f[i]=f[i+1];f.pop_back();
    	reverse(f.bg(),f.end());
    	f=Inv(f,n+1);
    	f.resize(n+1);
    	for(int i=n;i>=k;i--)f[i]=f[i-k];
    	for(int i=0;i<k;i++)f[i]=0;
    	for(int i=0;i<=n;i++)cout<<f[i]<<" ";
    }
    
  • 相关阅读:
    CookieContainer.Add只能加入20个Cookie实例的解决方法
    ELM网络训练模型
    ELM学习(一)
    贝叶斯规律
    异方差性
    分类,回归,聚类
    机器学习中的正则化
    过拟合
    高斯分布——正态分布或钟形分布
    IDC:全球数据库
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328647.html
Copyright © 2020-2023  润新知