• 【BZOJ 4407】于神之怒加强版(莫比乌斯反演+线性筛)


    传送门

    简单莫反后可以得到

    ans=T=1nnTmTf(T)ans=sum_{T=1}^nfrac n Tfrac m Tf(T)
    其中f=μIdkf=mu*Id_k
    然后线性筛ff即可
    对于f(pt)=p(t1)K+ptK=f(pt1)pKf(p^t)=-p^{(t-1)*K}+p^{tK}=f(p^{t-1})*p^{K}

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    cs int mod=1e9+7;
    inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
    inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
    inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
    inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    inline int fix(int x){return (x<0)?x+mod:x;}
    cs int N=5000005;
    int f[N],pr[N],pw[N],tot;
    bitset<N>vis;
    int n,m,K;
    inline void init(cs int len=N-5){
        f[1]=1;
        for(int i=2;i<=len;i++){
            if(!vis[i])pr[++tot]=i,pw[i]=ksm(i,K),f[i]=dec(pw[i],1);
            for(int j=1;j<=tot&&i*pr[j]<=len;j++){
                int p=i*pr[j];
                vis[p]=1;
                if(i%pr[j]==0){
                    f[p]=mul(f[i],pw[pr[j]]);break;
                }
                f[p]=mul(f[i],f[pr[j]]);
            }
        }
        for(int i=1;i<=len;i++)Add(f[i],f[i-1]);
    }
    inline void solve(){
        n=read(),m=read();
        if(n<m)swap(n,m);
        int ret=0;
        for(int i=1,j;i<=m;i=j+1){
            j=min(n/(n/i),m/(m/i));
            Add(ret,mul(n/i,mul(m/i,dec(f[j],f[i-1]))));
        }
        cout<<ret<<'
    ';
    }
    int main(){
        #ifdef Stargazer
        freopen("lx.in","r",stdin);
        #endif
        int T=read();K=read();
        init();
        while(T--)solve();  
    }
    
    
  • 相关阅读:
    Java-API-Package:java.sql百科
    Java-API-Package:java.net百科
    Java-API-Package:java.lang
    Java-API:java.lang百科
    Java-API-Package:org.springframework.stereotype
    Java-API-Package:org.springframework.beans.factory.annotation
    Java-API-Package:org.springframwork.transaction.annotation
    Java-API-Package:org.springframework.web.bind.annotation
    Java-API-Package:javax.annotation
    Java-API-Package:java.math
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328325.html
Copyright © 2020-2023  润新知