• 【洛谷 P3768】简单的数学题(莫比乌斯反演+杜教筛)


    传送门

    首先简单莫比乌斯反演可以得到
    i=1nj=1nijgcd(ij)sum_{i=1}^{n}sum_{j=1}^nijgcd(ij)
    =d=1nd3k=1ndμ(k)k2S(nkd)2,S(n)=i=1ni=sum_{d=1}^nd^3sum_{k=1}^{frac nd }mu(k)k^2S(frac n {kd})^2,S(n)=sum_{i=1}^ni
    =T=1nS(nT)2T2dTdμ(Td)=sum_{T=1}^nS(frac nT)^2T^2sum_{d|T}dmu(frac T d)
    考虑后面是μId=μIϕ=ϕmu*Id=mu*I*phi=phi
    =T=1nS(nT)2T2ϕ(T)=sum_{T=1}^nS(frac nT)^2T^2phi(T)
    考虑杜教筛求Id2ϕId^2phi的前缀和
    卷上Id2Id^2dnd2(nd)2ϕ(d)=n3sum_{d|n}d^2(frac n d)^2phi(d)=n^3
    i=1ni3=(n(n+1)2)2sum_{i=1}^ni^3=(frac {n*(n+1)}{2})^2
    这个可以构造n((n+1)4n4)sum_n((n+1)^4-n^4)得到关于n3n^3的式子求得

    然后差不多就做完了

    #include<bits/stdc++.h>
    using namespace std;
    #define cs const
    #define re register
    #define pb push_back
    #define pii pair<int,int>
    #define ll long long
    #define fi first
    #define se second
    #define bg begin
    cs int RLEN=1<<20|1;
    inline char gc(){
        static char ibuf[RLEN],*ib,*ob;
        (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
        return (ib==ob)?EOF:*ib++;
    }
    inline int read(){
        char ch=gc();
        int res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    inline ll readl(){
        char ch=gc();
        ll res=0;bool f=1;
        while(!isdigit(ch))f^=ch=='-',ch=gc();
        while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
        return f?res:-res;
    }
    template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
    template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
    int mod;
    inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
    inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
    inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
    inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
    inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
    inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
    inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
    inline int Inv(int x){return ksm(x,mod-2);}
    cs int N=10000006;
    int pr[N],tot,phi[N],f[N],iv3;
    bitset<N>vis;
    inline int P(int x){return mul(x,x);}
    inline int S1(int x){return 1ll*x*(x+1)/2%mod;}
    inline int S2(int x){return mul(mul(S1(x),2*x+1),iv3);}
    inline int S3(int x){return P(1ll*x*(x+1)/2%mod);}
    inline void init(cs int len=N-6){
    	phi[1]=1;
    	for(int i=2;i<=len;i++){
    		if(!vis[i])pr[++tot]=i,phi[i]=i-1;
    		for(int j=1,p;j<=tot&&i*pr[j]<=len;j++){
    			p=i*pr[j],vis[p]=1;
    			if(i%pr[j]==0){phi[p]=phi[i]*pr[j];break;}
    			phi[p]=phi[i]*phi[pr[j]];
    		}
    	}
    	
    	for(int i=1;i<=len;i++)f[i]=add(f[i-1],mul(phi[i],P(i)));
    }
    ll n;
    struct Map{
    	static cs int mod=192733;
    	int val[mod];ll key[mod];
    	Map(){memset(key,-1,sizeof(key));}
    	cs int &operator [](cs ll &k)cs{
    		int p=k%mod;
    		while((~key[p])&&(key[p]!=k))p=(p==mod-1)?0:(p+1);
    		return val[p];
    	}
    	int &operator [](cs ll &k){
    		int p=k%mod;
    		while((~key[p])&&(key[p]!=k))p=(p==mod-1)?0:(p+1);
    		if(key[p]!=k)key[p]=k;
    		return val[p];		
    	}
    	inline bool count(ll k){
    		int p=k%mod;
    		while((~key[p])&&(key[p]!=k))p=(p==mod-1)?0:(p+1);
    		return key[p]==k;
    	}
    };
    Map mp;
    inline int S(ll n){
    	if(n<=N-6)return f[n];
    	if(mp.count(n))return mp[n];
    	int ret=S3(n%mod);
    	for(ll i=2,j;i<=n;i=j+1){
    		j=n/(n/i);
    		Dec(ret,mul(dec(S2(j%mod),S2((i-1)%mod)),S(n/i)));
    	}
    	return mp[n]=ret;
    }
    signed main(){
    	#ifdef Stargazer
    	freopen("lx.in","r",stdin);
    	#endif
    	mod=read(),n=readl();
    	init(),iv3=Inv(3);
    	int ret=0;
    	for(ll i=1,j;i<=n;i=j+1){
    		j=n/(n/i);
    		Add(ret,mul(P(S1(n/i%mod)),dec(S(j),S(i-1))));
    	}
    	cout<<ret<<'
    ';return 0;
    }
    
  • 相关阅读:
    《贝叶斯优化: 一种更好的超参数调优方式》
    《从Google Visor到Microsoft NNI再到Advisor调参服务接口发展史》
    《归一化激活层的进化:谷歌Quoc Le等人利用AutoML 技术发现新型ML模块》
    《通用视觉 & NAS》
    《Object Detection-IOU Net笔记》
    《Detectron2之ROIAlign》
    《IoUNet(6)_源码_RoIAlign(1)》
    聊天机器人资源合集:项目,语聊,论文,教程。
    一个使用 Python 的人工智能聊天机器人框架
    【TensorFlow 官网 可以直接访问】让中国开发者更容易地使用TensorFlow打造人工智能应用
  • 原文地址:https://www.cnblogs.com/stargazer-cyk/p/12328321.html
Copyright © 2020-2023  润新知