下午
预:60+100+30
实:30+30+30
T1水题(water)
T1写了二分图匹配
听说有70分,写挫了....
正解:贪心,按长度排序,
对于第一幅牌里面的,在第二个里面,找一个长度小于,高度最接近的牌
进行覆盖。
#include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> #include <set> using namespace std; int n; multiset <int> s; struct node {int x,y;} a[100005],b[100005]; int cmp(node i,node j) {return i.x<j.x;} int main() { freopen("water.in","r",stdin); freopen("water.out","w",stdout); int T; T=1; while(T--) { scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d%d",&a[i].x,&a[i].y); for(int i=0;i<n;i++) scanf("%d%d",&b[i].x,&b[i].y); sort(a,a+n,cmp); sort(b,b+n,cmp); s.clear(); int k=0,ans=0; for(int i=0;i<n;i++) { while(a[i].x>=b[k].x&&k<n) { s.insert(b[k].y); k++; } if(s.empty())continue; multiset<int>::iterator it=s.upper_bound(a[i].y); if (it==s.begin()) continue; it--; ans++; s.erase(it); } printf("%d ",ans); } return 0; }
T2下午梦境(dream)
手推公式,推错了.....30
正解dp||爆搜
#include <cmath> #include <cstdio> #include <cstdlib> #include <iostream> #include <algorithm> using namespace std; int n,sum,ans,dp[1005][1005],DP[1005][1005],i,j,k,l; int main() { freopen("dream.in","r",stdin); freopen("dream.out","w",stdout); scanf("%d",&n); sum=int(log(n)/log(2)+0.000000001)+1; dp[1][1]=1; for (i=1; i<sum; i++) { for (j=1; j<=n; j++) for (k=1; k<=n; k++) if (dp[j][k]) for (l=k+1; l<=j+1; l++) DP[min(n,j+l)][l]+=dp[j][k]; for (j=1; j<=n; j++) for (k=1; k<=n; k++) {dp[j][k]=DP[j][k];DP[j][k]=0;} } for (j=1; j<=n; j++) ans+=dp[n][j]; cout<<sum<<' '<<ans; return 0; }
T3动态规划(dp)
不会做30分爆搜
正解:
dp[i][j] 1~i 切了j刀,的最优解
dp[i][j]=min{dp[k][j-1]+sum(k+1,i)}
可以证明这个转移方程具有单调性,zhw说自己yy
20*n^2的简单dp -> 在固定j的情况下 随着i的增大,k不降 ,那么就可分治了
#include <cstdio> #include <iostream> #include <algorithm> #define N 1000011 #define min(x, y) ((x) < (y) ? (x) : (y)) #define max(x, y) ((x) > (y) ? (x) : (y)) using namespace std; int n, q, ans; int f[N]; struct node { int x, y, z; }p[N], t[N]; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * f; } inline bool cmp(node x, node y) { return x.z > y.z; } inline int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); } inline bool check(int k) { int i, j, x, y, lmin, lmax, rmin, rmax; for(i = 1; i <= n + 1; i++) f[i] = i; for(i = 1; i <= k; i++) t[i] = p[i]; std::sort(t + 1, t + k + 1, cmp); lmin = lmax = t[1].x; rmin = rmax = t[1].y; for(i = 2; i <= k; i++) { if(t[i].z < t[i - 1].z) { if(find(lmax) > rmin) return 1; for(j = find(lmin); j <= rmax; j++) f[find(j)] = find(rmax + 1); lmin = lmax = t[i].x; rmin = rmax = t[i].y; } else { lmin = min(lmin, t[i].x); lmax = max(lmax, t[i].x); rmin = min(rmin, t[i].y); rmax = max(rmax, t[i].y); if(lmax > rmin) return 1; } } // cout<<find(1)<<endl; if(find(lmax) > rmin) return 1; return 0; } int main() { freopen("number.in","r",stdin); freopen("number.out","w",stdout); int i, x, y, mid; n = read(); q = read(); for(i = 1; i <= q; i++) p[i].x = read(), p[i].y = read(), p[i].z = read(); x = 1, y = q; //cout<<check(2)<<endl; //return 0; ans = q + 1; while(x <= y) { mid = (x + y) >> 1; if(check(mid)) ans = mid, y = mid - 1; else x = mid + 1; } printf("%d ", ans); return 0; }