题目描述
The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i.
Some pairs of pastures are connected by one of N-1 bidirectional walkways that the cows can traverse. Walkway i connects pastures A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has a length of L_i (1 <= L_i <= 10,000).
The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.
The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between 1 <= L_i <= 10,000 pairs of pastures (each pair given as a query p1,p2 (1 <= p1 <= N; 1 <= p2 <= N).
POINTS: 200
有N(2<=N<=1000)头奶牛,编号为1到W,它们正在同样编号为1到N的牧场上行走.为了方 便,我们假设编号为i的牛恰好在第i号牧场上.
有一些牧场间每两个牧场用一条双向道路相连,道路总共有N - 1条,奶牛可以在这些道路 上行走.第i条道路把第Ai个牧场和第Bi个牧场连了起来(1 <= A_i <= N; 1 <= B_i <= N),而它的长度 是 1 <= L_i <= 10,000.在任意两个牧场间,有且仅有一条由若干道路组成的路径相连.也就是说,所有的道路构成了一棵树.
奶牛们十分希望经常互相见面.它们十分着急,所以希望你帮助它们计划它们的行程,你只 需要计算出Q(1 < Q < 1000)对点之间的路径长度•每对点以一个询问p1,p2 (1 <= p1 <= N; 1 <= p2 <= N). 的形式给出.
输入输出格式
输入格式:
-
Line 1: Two space-separated integers: N and Q
-
Lines 2..N: Line i+1 contains three space-separated integers: A_i, B_i, and L_i
- Lines N+1..N+Q: Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: p1 and p2
输出格式:
- Lines 1..Q: Line i contains the length of the path between the two pastures in query i.
输入输出样例
4 2 2 1 2 4 3 2 1 4 3 1 2 3 2
2 7
说明
Query 1: The walkway between pastures 1 and 2 has length 2.
Query 2: Travel through the walkway between pastures 3 and 4, then the one between 4 and 1, and finally the one between 1 and 2, for a total length of 7.
路径是一条树两点间的距离用lca求解
考虑边权问题,由于倍增法从节点1开始dfs处理深度与边权,可以处理出前缀和,那么两点间路径边权和就是dis[a]+dis[b]-2*dis[lca(a,b)]
#include<cstdio> #include<algorithm> using namespace std; const int maxn = 100010; int n,m,num,head[maxn]; struct node{ int v,w,next; }edge[maxn];int dad[maxn][22],deep[maxn],dis[maxn]; inline void add_edge(int u,int v,int w) { edge[++num].v=v,edge[num].w=w,edge[num].next=head[u],head[u]=num; } void dfs(int x) { deep[x]=deep[dad[x][0]]+1; for(int i=0;dad[x][i];i++) dad[x][i+1]=dad[dad[x][i]][i]; for(int i=head[x];i;i=edge[i].next) if(!deep[edge[i].v]) { dis[edge[i].v]=dis[x]+edge[i].w; //printf("%d - > %d : %d ",x,edge[i].v,edge[i].v); dad[edge[i].v][0]=x; dfs(edge[i].v); } } int lca(int x,int y) { if(deep[x]>deep[y])swap(x,y); for(int i=20;i>=0;i--) if(deep[dad[y][i]]>=deep[x])y=dad[y][i]; if(x==y)return x; for(int i=20;i>=0;i--) if(dad[x][i]!=dad[y][i]) { x=dad[x][i]; y=dad[y][i]; } return dad[x][0]; } int main () { scanf("%d%d",&n,&m); for(int a,b,c,i=1;i<n;++i) { scanf("%d%d%d",&a,&b,&c); add_edge(a,b,c);add_edge(b,a,c); } dfs(1); int a,b; while(m--) { scanf("%d%d",&a,&b); printf("%d ",dis[a]+dis[b]-2*dis[lca(a,b)]); //printf("%d ",dis[4]); } return 0; }