• 2018牛客网暑期ACM多校训练营第一场


    A

    要满足向右递减向左递减相当于01,02的分界点,上一行始终在下一行的右侧,转化为不相交路径,套用LGV定理

    B

    将矩阵看作一个邻接矩阵,于是问题转化成了:请计算有多少个无向图满足所有点的度数都为2
    则图应该是有若干个环组成,dp[i]表示有i个点的图的个数,然后可以枚举最后一个点所在环转移

    C

    (X_i)表示灯(i)是亮否
    (E(sum(x_i)^3) = E(sum X_i X_j X_k)=sum P(X_i X_j X_k))
    上面将3次方展开得后式
    开关矩阵(A_{ij}) 对于任意三个灯泡(x,y,z)对应矩阵三列(A_{kx} A_{ky} A_{kz}) 得到n*3的矩阵(B_{ij}) 则使的x,y,z都为亮着的概率就是从B矩阵行中任取子集使每列异或和为0的概率,子集共有(2^n)种,矩阵中的线性无关的行向量总能张成与先行相关向量异或为0的向量,设矩阵的秩为r,则概率就是(frac{2^{n - r}}{2^{n}} = frac{1}{2^r})
    因为行秩等于列秩,而只有三列,只需要求列秩,枚举即可秩为0,1,2的情况即可

    D

    图同构,考虑枚举点的映射关系,暴力判断

    E

    定义dp[i] 代表长度为i的子序列个数。
    pre[i][j] 记录长度为i,以j数字结尾的子序列个数。
    转移时对于i,枚举dp[j] +dp[j - 1],此时重复情况为pre[a[i]][j]减去
    不断更新pre,pre[a[i]][j] = dp[j - 1];

    F

    (sum_{x_1 = 1}^{a_1}sum_{x_2 = 1}^{a_2}...sum_{x_n = 1}^{a_n} sum max{x_1,x_2,....x_n})
    将a排序,对于(a_{i - 1}< x <= a_i)
    对于(a_1 到a_{i - 1})可与随便选,方案数为(prod_{j = 1}^{i - 1}a_i)
    对于(a_i到a_n),当 (a_{i - 1} + 1< x <= a_i) 需要保证(a_i到a_n)中至少一个为x,容斥得方案数(sum_{j = 1}^{n - i + 1}C_{n - i + 1}^{j} (-1)^{j - 1} * x^{n - i + 1 - j} =x^{n - i + 1} -(x - 1)^{n - i + 1}) 总方案数为前后两部分乘积
    则对于x的答案为((prod_{j = 1}^{i - 1}a_i)* sum_{j = 1}^{n - i + 1} x * C_{n - i + 1}^{j} (-1)^{j - 1} * x^{n - i + 1 - j} =x^{n - i + 1} -(x - 1)^{n - i + 1})
    对于后半部分另
    $g(a_i) = sum_{x = 1} ^ {a_i}x*(x^{n - i + 1}-(x - 1)^{n - i + 1}) $
    则后半部分为(g(a_i) - g(a_{i - 1}))
    对于(g(a_i))最高项为(n - i)则其对应一个(n - i + 1)的多项式,只需要求出(n-i+2)点值后插值可得到(g(a_i))

    G

    斯坦纳树
    等会写

    H

    treedp+斜率优化
    等会写

    J

    莫队暴力

  • 相关阅读:
    非诚勿扰骆琦攻略
    IT服务者的困惑与解决之道
    某某银行IT运维管理的三点和四化
    提升CIO地位及IT价值体现,IT治理理念在中国势在必行
    振兴民族软件,险恶的江湖该如何仗剑走天涯
    某连锁饭店IT服务台、自助服务建设
    证券行业ITIL初探助力券商成就IT管理之路
    分享屡见成效的另类方法论保障ITIL软件及ITSM方案落地实施
    城市商业银行IT科技工作管理之痛
    【转】陈天晴:信息化发展要注意规划调整 重视IT治理
  • 原文地址:https://www.cnblogs.com/sssy/p/14326740.html
Copyright © 2020-2023  润新知