题目描述
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
给出一张无向连通图,求S到E经过k条边的最短路。
输入输出格式
输入格式:
* Line 1: Four space-separated integers: N, T, S, and E
* Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
输出格式:
* Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
输入输出样例
2 6 6 4 11 4 6 4 4 8 8 4 9 6 6 8 2 6 9 3 8 9
10
题解:
一句话题意:给出一个有t条边的图,求从s到e恰好经过k条边的最短路。
a:是图的邻接矩阵,f是图中任意两点直接的最短距离、
floyd算法:
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
一遍floyed后: f[i][j]是i到j的最短距离:中间至少1条边(连通图),最多n-1条边
floyd算法的变形:
a:是图的邻接矩阵,a[i][j]是经过一条边的最短路径。f[i][j]k的初值为∞
f[i][j]-1=∞;
f[i][j]1=a; //经过一条边的最短路径
f[i][j]2=min(f[i][j]2,a[i][k]+a[k][j])=a*a=a2;//经过二条边的最短路径,经过一次floyd.矩阵相乘一次,f[i][j]2初值为∞。
f[i][j]3=min(f[i][j]3,f[i][k]2+a[k][j])=a*a*a=a3;//经过三条边的最短路径,经过二次floyd。f[i][j]3初值为∞
f[i][j]4=min(f[i][j]4,f[i][k]3+a[k][j])=a4;//经过四条边的最短路径,经过三次floyd,f[i][j]4初值为∞
...
f[i][j]k=min(f[i][j]k,f[i][k]k-1+a[k][j])=ak;//经过k条边的最短路径,经过K-1次floyd,f[i][j]k初值为∞
而floyd的时间复杂度为O(n3),则从的时间复杂度为O(Kn3),非常容易超时。
所以我们可以用快速幂来完成。
f[i][j]r+p=min(f[i][j]r+p,f[i][k]r+f[k][j]p)
程序:
//洛谷2886 //(1)对角线不能设置为0,否则容易自循环。(2)数组要放在主程序外面 //(3)K条边,不一定是最简路 #include<iostream> #include<cstdio> #include<map> #include<cstring> using namespace std; map<int,int>f; const int maxn=210; int k,t,s,e,n; int a[maxn][maxn]; struct Matrix{ int b[maxn][maxn]; }; Matrix A,S; Matrix operator *(Matrix A,Matrix B){//运算符重载 Matrix c; memset(c.b,127/3,sizeof(c.b) ); for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) c.b[i][j]=min(c.b[i][j],A.b[i][k]+B.b[k][j]); return c; } Matrix power(Matrix A,int k){ if(k==0) return A; Matrix S=A; for(int i=1;i<=n;i++){ for (int j=1;j<=n;j++) cout<<A.b[i][j]<<" "; cout<<endl; } cout<<endl; while(k){ if(k&1)S=S*A;//奇数执行,偶数不执行 /*cout<<k<<":"<<endl; for(int i=1;i<=n;i++){ for (int j=1;j<=n;j++) cout<<S.b[i][j]<<" "; cout<<endl; }*/ cout<<endl; A=A*A; k=k>>1; } return S; } int main(){ cin>>k>>t>>s>>e; int w,x,y; memset(A.b,127/3,sizeof(A.b) );// 赋初值 n=0; for(int i=1;i<=t;i++){//t<100,x<1000 点不是从1开始的,可以用map离散化,给点从1开始编号。n记录共有多少个点。 cin>>w>>x>>y; if (f[x]==0) f[x]=++n; if (f[y]==0) f[y]=++n; A.b[f[x]][f[y]]=A.b[f[y]][f[x]]=min(w,A.b[f[y]][f[x]]); } S=power(A,k-1);//快速幂.执行k-1次floyd矩阵乘 s=f[s]; e=f[e]; cout<<S.b[s][e]; return 0; }