• 2020系统综合实践 第7次实践作业 30组


    一、在树莓派中安装opencv库

    参考教程:关于opencv的编译安装,可以参考Adrian Rosebrock的Raspbian Stretch: Install OpenCV 3 + Python on your Raspberry Pi。

    (1)安装依赖项

    # 更新软件源,更新软件
    sudo apt-get update && sudo apt-get upgrade
    
    # Cmake等开发者工具
    sudo apt-get install build-essential cmake pkg-config
    
    # 图片I/O包
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    
    # 视频I/O包
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    
    # OpenCV用于显示图片的子模块需要GTK
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    
    # 性能优化包
    sudo apt-get install libatlas-base-dev gfortran
    
    # 安装 Python2.7 & Python3
    sudo apt-get install python2.7-dev python3-dev
    

    下载OpenCV源码

    cd ~
    wget -O opencv.zip https://github.com/Itseez/opencv/archive/4.1.2.zip
    unzip opencv.zip
    wget -O opencv_contrib.zip https://github.com/Itseez/opencv_contrib/archive/4.1.2.zip
    unzip opencv_contrib.zip
    

    安装pip

    wget https://bootstrap.pypa.io/get-pip.py
    sudo python get-pip.py
    sudo python3 get-pip.py
    

    安装Python虚拟机

    sudo pip install virtualenv virtualenvwrapper
    sudo rm -rf ~/.cache/pip
    

    配置~/.profile,添加

    export WORKON_HOME=$HOME/.virtualenvs
    export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
    export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv
    source /usr/local/bin/virtualenvwrapper.sh
    export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin
    

    输入生效

    source ~/.profile
    

    使用Python3安装虚拟机

    mkvirtualenv cv -p python3
    

    进入虚拟机

    source ~/.profile && workon cv
    

    安装numpy

    pip install numpy
    

    编译OpenCV

    cd ~/opencv-4.1.2/
    mkdir build
    cd build
    cmake -D CMAKE_BUILD_TYPE=RELEASE 
        -D CMAKE_INSTALL_PREFIX=/usr/local 
        -D INSTALL_PYTHON_EXAMPLES=ON 
        -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.1.2/modules 
        -D BUILD_EXAMPLES=ON ..
    


    成功

    编译前,需要增大交换空间CONF_SWAPSIZE=1024,避免内存不足

    sudo nano /etc/dphys-swapfile  #虚拟机中sudo才可以修改
    # 重启swap服务
    sudo /etc/init.d/dphys-swapfile stop
    sudo /etc/init.d/dphys-swapfile start
    

    开始编译

    make j4
    

    经历九九八十一难终于编译成功了 (哭

    安装OpenCV

    sudo make install
    sudo ldconfig
    

    检查OpenCV安装位置,并建立软链

    ls -l /usr/local/lib/python3.7/site-packages/ #查看cv2
    cd ~/.virtualenvs/cv/lib/python3.7/site-packages/
    ln -s /usr/local/lib/python3.7/site-packages/cv2.cpython-37m-arm-linux-gnueabihf.so cv2.so #建立软链
    

    验证安装

    source ~/.profile 
    workon cv
    python
    import cv2
    cv2.__version__  #查看cv2版本
    

    二、使用opencv和python控制树莓派的摄像头

    参考教程:还是可以参考Adrian Rosebrock的Accessing the Raspberry Pi Camera with OpenCV and Python
    跑通教程的示例代码(有可能要调整里面的参数)

    picamera模块安装
    开启虚拟机(以下操作都在虚拟机中进行)
    安装picamera

    pip install "picamera[array]"
    

    在Python代码中导入OpenCV控制摄像头
    拍照测试

    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
     
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    rawCapture = PiRGBArray(camera)
     
    # allow the camera to warmup
    time.sleep(3) 
     
    # grab an image from the camera
    camera.capture(rawCapture, format="bgr")
    image = rawCapture.array
     
    # display the image on screen and wait for a keypress
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    

    三、利用树莓派的摄像头实现人脸识别

    人脸识别有开源的python库face_recognition,这当中有很多示例代码
    参考教程:树莓派实现简单的人脸识别
    要求:跑通face_recognition的示例代码facerec_on_raspberry_pi.py以及facerec_from_webcam_faster.py

    (1)安装所需依赖库

    source ~/.profile 
    workon cv 
    pip install dlib
    pip install face_recognition
    

    测试安装

    python
    import face_recognition
    

    (2)切换到代码和图片所在文件夹运行代码
    1.将代码和图片传入树莓派

    2.运行代码
    facerec_on_raspberry_pi.py

    # This is a demo of running face recognition on a Raspberry Pi.
    # This program will print out the names of anyone it recognizes to the console.
    # To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
    # the picamera[array] module installed.
    # You can follow this installation instructions to get your RPi set up:
    # https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
    
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    image = face_recognition.load_image_file("Yao.jpg")
    face_encoding = face_recognition.face_encodings(image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
    
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
    
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
    
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Yao ming"
            print("I see someone named {}!".format(name))
    
    

    facerec_from_webcam_faster.py

    import face_recognition
    import cv2
    import numpy as np
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    Jay_Chou_image = face_recognition.load_image_file("jay.jpg")
    Jayface_encoding = face_recognition.face_encodings(Jay_Chou_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    Messi_image = face_recognition.load_image_file("messi.jpg")
    Messi_face_encoding = face_recognition.face_encodings(Messi_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        Jay_encoding,
        Messi_face_encoding
    ]
    
    known_face_names = [
        "Jay",
        "Messi"
    ]
    
    
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    
    process_this_frame = True
    
    while True:
    
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
    
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    


    四、结合微服务的进阶任务

    使用微服务,部署opencv的docker容器(要能够支持arm),并在opencv的docker容器中跑通(3)的示例代码facerec_on_raspberry_pi.py
    选做:在opencv的docker容器中跑通步骤(3)的示例代码facerec_from_webcam_faster.py

    (1)Docker的安装和配置

    #脚本安装docker
    sudo curl -sSL https://get.docker.com | sh
    #填加用户到docker组
    sudo usermod -aG docker pi
    #重新登陆以用户组生效
    exit && ssh pi@raspiberry
    #验证docker版本
    docker --version
    

    拉取镜像(支持arm)

    sudo docker pull  sixsq/opencv-python
    

    进入容器并安装所需依赖

    docker run -it [imageid] /bin/bash
    pip install "picamera[array]" dlib face_recognition
    

    commit更新容器建立新的镜像

    docker commit [containerid] [自定义镜像名]
    

    编写dockerfile文件构建镜像
    dockerfile文件:

    FROM yqc_cv
    MAINTAINER 555
    RUN mkdir /myapp
    WORKDIR /myapp
    COPY myapp .
    

    构建镜像:

    sudo docker build opencv2 .
    

    构建成功后,运行容器

    docker run -it --device=/dev/vchiq --device=/dev/video0 myopencv opencv2
    

    运行facerec_on_raspberry_pi.py

    python3 facerec_on_raspberry_pi.py
    

    选做:在opencv的docker容器中跑通步骤(3)的示例代码facerec_from_webcam_faster.py
    在Windows系统中安装XMing

    启动putty

    查看DISPLAY环境变量值

    printenv
    

    编辑并启动脚本run.sh

    xhost +	#允许来自任何主机的连接
    docker run -it 
            --rm 
            -v ${PWD}/workdir:/worksapce 
            --net=host 
            -v $HOME/.Xauthority:/root/.Xauthority 
            -e DISPLAY=:0.0  	#此处填写上面查看到的变量值
            -e QT_X11_NO_MITSHM=1 
            --device=/dev/vchiq 
            --device=/dev/video0 
            opencv2 
            recognition.py
    

    执行脚本sh run.sh

    (5) 以小组为单位,发表一篇博客,记录遇到的问题和解决方法,提供小组成员名单、分工、各自贡献以及在线协作的图片

    说起来的话这次的实验真的让我没有想到会这么困难,幸亏鼠标质量好,不然...
    1.问题


    这个东西一直在报错,我一直不知道啥问题,就只是文件夹的位置不正确然后让我浪费了很长时间

    ②编译的时候缺少文件,查资料在网上找文件

    cd /home/pi/opencv_contrib-4.1.2/modules/xfeatures2d/src
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_lbgm.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_256.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_128.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_064.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm_hd.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm_bi.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_120.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_64.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_48.i
    wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_80.i
    

    还有很多小问题...

    2.小组成员名单

    学号 姓名 分工
    061700232 闫佳豪 实际操作和博客撰写
    031702435 张昊 提供代码及测试图片
    011703120 王玥 提供代码及测试图片

    3.在线协作的图片
    在QQ视频协作

  • 相关阅读:
    CentOS6.4安装OpenSSL
    Linux下设置Tomcat开机启动
    Linux下Tomcat8.0.44配置使用Apr
    CentOS6.4将MySQL5.1升级至5.5.36
    Linux下实现MySQL数据库自动备份
    Linux将MySQL数据库目录挂载至新数据盘
    MySQL创建数据库与创建用户以及授权
    Node.js Mongoose数据库连接失败 提示:Authentication failed
    JBoss7.1.1远程无法访问
    mongodb3.4 远程连接认证失败
  • 原文地址:https://www.cnblogs.com/spongebobyjh/p/13110558.html
Copyright © 2020-2023  润新知