Java 12 已如期于 3 月 19 日正式发布,此次更新是 Java 11 这一长期支持版本发布之后的一次常规更新,截至目前,Java 半年为发布周期,并且不会跳票承诺的发布模式,已经成功运行一年多了。通过这样的方式,Java 开发团队能够将一些重要特性尽早的合并到 Java Release 版本中,以便快速得到开发者的反馈,避免出现类似 Java 9 发布时的两次延期的情况。
1 Switch 表达式
Java 12 早在 2018 年 12 月便进入了 Rampdown Phase One 阶段,这意味着该版本所有新的功能特性被冻结,不会再加入更多的 JEP。该阶段将持续大概一个月,主要修复 P1-P3 级错误。主要时间节点如下:
- 2018-12-13 Rampdown 第一阶段 ( 从主线分离 )
- 2019-01-17 Rampdown 第二阶段
- 2019-02-07 发布候选阶段
- 2019-03-19 正式发布
本文主要针对 Java 12 中的新特性展开介绍,让您快速了解 Java 12 带来的变化。
使用Java 12,switch不仅可以作为语句也可以作为表达式。 无论作为语句或者作为表达式,switch都可以使用传统/简化的作用域和控制流行为。 这将有助于简化代码,并为在switch中使用模式匹配铺平道路。
Java开发人员正在增强Java编程语言,以使用模式匹配来解决当前switch语句的几个问题。 这包括:switch块的默认控制流行为,switch块默认作用域(被视为单个作用域的块)和switch仅作为语句。
在Java 11中,switch语句追随C和C++,默认情况下使用fall-through语义。 虽然传统的控制流程在编写低级代码时很有用,但随着switch在更高级别的环境中采用,易出错会盖过其灵活性。
Java 11
Java 12
2 默认CDS归档
通过在64位平台上的默认类列表的帮助下生成CDS归档来改进JDK构建过程,从而有效地消除了运行java -Xshare:dump。 此功能的目标包括:1。)改进开箱即用的启动时间,以及2.)摆脱使用-Xshare:dump。
3 Shenandoah GC
Shenandoah是一种垃圾收集(GC)算法,旨在保证低延迟(10 - 500 ms的下限)。 它通过在运行Java工作线程的同时执行GC操作减少GC暂停时间。 使用Shenandoah,暂停时间不依赖于堆的大小。 这意味着无论堆的大小如何,暂停时间都是差不多的。
这是一个实验性功能,不包含在默认(Oracle)的OpenJDK版本中。
4 JMH 基准测试
此功能为JDK源代码添加了一套微基准测试(大约100个),简化了现有微基准测试的运行和新基准测试的创建过程。 它基于Java Microbenchmark Harness(JMH)并支持JMH更新。
此功能使开发人员可以轻松运行当前的微基准测试并为JDK源代码添加新的微基准测试。 可以基于Java Microbenchmark Harness(JMH)轻松测试JDK性能。 它将支持JMH更新,并在套件中包含一组(约100个)基准测试。
5 JVM 常量 API
JEP 334引入了一个API,用于建模关键类文件和运行时artifacts,例如常量池。 此API将包括ClassDesc,MethodTypeDesc,MethodHandleDesc和DynamicConstantDesc等类。此 API 对于操作类和方法的工具很有帮助。
6 G1的可中断 mixed GC
此功能通过将Mixed GC集拆分为强制部分和可选部分,使G1垃圾收集器更有效地中止垃圾收集过程。通过允许垃圾收集过程优先处理强制集,g1可以更多满足满足暂停时间目标。
G1是一个垃圾收集器,设计用于具有大量内存的多处理器机器。由于它提高了性能效率,g1垃圾收集器最终将取代cms垃圾收集器。
G1垃圾收集器的主要目标之一是满足用户设置的暂停时间。G1采用一个分析引擎来选择在收集期间要处理的工作量。此选择过程的结果是一组称为GC集的区域。一旦GC集建立并且GC已经开始,那么G1就无法停止。
如果G1发现GC集选择选择了错误的区域,它会将GC区域的拆分为两部分(强制部分和可选部分)来切换到处理Mix GC的增量模式。如果未达到暂停时间目标,则停止对可选部分的垃圾收集。
7 G1归还不使用的内存
此功能的主要目标是改进G1垃圾收集器,以便在不活动时将Java堆内存归还给操作系统。 为实现此目标,G1将在低应用程序活动期间定期生成或持续循环检查完整的Java堆使用情况。
这将立即归还未使用的部分Java堆内存给操作系统。 用户可以选择执行FULL GC以最大化返回的内存量。
8 移除多余ARM64实现
Java 12将只有一个ARM 64位实现(aarch64)。 目标是删除所有与arm64实现相关的代码,同时保留32位ARM端口和64位aarch64实现。
这将把重点转移到单个64位ARM实现,并消除维护两个实现所需的重复工作。 当前的JDK 11实现中有两个64位ARM实现。
Shenandoah:一个低停顿垃圾收集器(实验阶段)
Java 12 中引入一个新的垃圾收集器:Shenandoah,它是作为一中低停顿时间的垃圾收集器而引入到 Java 12 中的,其工作原理是通过与 Java 应用程序中的执行线程同时运行,用以执行其垃圾收集、内存回收任务,通过这种运行方式,给虚拟机带来短暂的停顿时间。
Shenandoah 垃圾回收器是 Red Hat 在 2014 年宣布进行的一项垃圾收集器研究项目,旨在针对 JVM 上的内存收回实现低停顿的需求。该设计将与应用程序线程并发,通过交换 CPU 并发周期和空间以改善停顿时间,使得垃圾回收器执行线程能够在 Java 线程运行时进行堆压缩,并且标记和整理能够同时进行,因此避免了在大多数 JVM 垃圾收集器中所遇到的问题。
据 Red Hat 研发 Shenandoah 团队对外宣称,Shenandoah 垃圾回收器的暂停时间与堆大小无关,这意味着无论将堆设置为 200 MB 还是 200 GB,都将拥有一致的系统暂停时间,不过实际使用性能将取决于实际工作堆的大小和工作负载。
Shenandoah GC
上图对应工作周期如下:
- Init Mark 启动并发标记 阶段
- 并发标记遍历堆阶段
- 并发标记完成阶段
- 并发整理回收无活动区域阶段
- 并发 Evacuation 整理内存区域阶段
- Init Update Refs 更新引用初始化 阶段
- 并发更新引用阶段
- Final Update Refs 完成引用更新阶段
- 并发回收无引用区域阶段
需要了解不是唯有 GC 停顿可能导致常规应用程序响应时间比较长。具有较长的 GC 停顿时间会导致系统响应慢的问题,但响应时间慢并非一定是 GC 停顿时间长导致的,队列延迟、网络延迟、其他依赖服务延迟和操作提供调度程序抖动等都可能导致响应变慢。使用 Shenandoah 时需要全面了解系统运行情况,综合分析系统响应时间。各种 GC 工作负载对比如下所示:
图 2. 各种 GC 工作负载对比
Shenandoah