• R语言学习笔记:SQL操作


    虽然R很强大,但如果对SQL非常熟悉,也不能浪费这项技能了,可以用上sqldf包,从example("sqldf")抄了几条用法放在这里,以后可能会用上。

    library("tcltk")

    a1r <- head(warpbreaks)

    a1s <- sqldf("select * from warpbreaks limit 6")

    a2r <- subset(CO2, grepl("^Qn", Plant))

    a2s <- sqldf("select * from CO2 where Plant like 'Qn%'")

      

    data(farms, package = "MASS")

    a3r <- subset(farms, Manag %in% c("BF", "HF"))

    row.names(a3r) <- NULL

    a3s <- sqldf("select * from farms where Manag in ('BF', 'HF')")

      

    a4r <- subset(warpbreaks, breaks >= 20 & breaks <= 30)

    a4s <- sqldf("select * from warpbreaks where breaks between 20 and 30",  row.names = TRUE)

    a5r <- subset(farms, Mois == 'M1')

    a5s <- sqldf("select * from farms where Mois = 'M1'", row.names = TRUE)

      

    a6r <- subset(farms, Mois == 'M2')

    a6s <- sqldf("select * from farms where Mois = 'M2'", row.names = TRUE)

    a7r <- rbind(a5r, a6r)

    a7s <- sqldf("select * from a5s union all select * from a6s")

    row.names(a7r) <- NULL

      

    其它例子暂时用不到,就不试了,把example(sqldf)的输出记录在这里。

    sqldf> # aggregate - avg conc and uptake by Plant and Type
    sqldf> a8r <- aggregate(iris[1:2], iris[5], mean)

    sqldf> a8s <- sqldf('select Species, avg("Sepal.Length") `Sepal.Length`,
    sqldf+ avg("Sepal.Width") `Sepal.Width` from iris group by Species')

    sqldf> all.equal(a8r, a8s)
    [1] TRUE

    sqldf> # by - avg conc and total uptake by Plant and Type
    sqldf> a9r <- do.call(rbind, by(iris, iris[5], function(x) with(x,
    sqldf+ data.frame(Species = Species[1],
    sqldf+ mean.Sepal.Length = mean(Sepal.Length),
    sqldf+ mean.Sepal.Width = mean(Sepal.Width),
    sqldf+ mean.Sepal.ratio = mean(Sepal.Length/Sepal.Width)))))

    sqldf> row.names(a9r) <- NULL

    sqldf> a9s <- sqldf('select Species, avg("Sepal.Length") `mean.Sepal.Length`,
    sqldf+ avg("Sepal.Width") `mean.Sepal.Width`,
    sqldf+ avg("Sepal.Length"/"Sepal.Width") `mean.Sepal.ratio` from iris
    sqldf+ group by Species')

    sqldf> all.equal(a9r, a9s)
    [1] TRUE

    sqldf> # head - top 3 breaks
    sqldf> a10r <- head(warpbreaks[order(warpbreaks$breaks, decreasing = TRUE), ], 3)

    sqldf> a10s <- sqldf("select * from warpbreaks order by breaks desc limit 3")

    sqldf> row.names(a10r) <- NULL

    sqldf> identical(a10r, a10s)
    [1] TRUE

    sqldf> # head - bottom 3 breaks
    sqldf> a11r <- head(warpbreaks[order(warpbreaks$breaks), ], 3)

    sqldf> a11s <- sqldf("select * from warpbreaks order by breaks limit 3")

    sqldf> # attributes(a11r) <- attributes(a11s) <- NULL
    sqldf> row.names(a11r) <- NULL

    sqldf> identical(a11r, a11s)
    [1] TRUE

    sqldf> # ave - rows for which v exceeds its group average where g is group
    sqldf> DF <- data.frame(g = rep(1:2, each = 5), t = rep(1:5, 2), v = 1:10)

    sqldf> a12r <- subset(DF, v > ave(v, g, FUN = mean))

    sqldf> Gavg <- sqldf("select g, avg(v) as avg_v from DF group by g")

    sqldf> a12s <- sqldf("select DF.g, t, v from DF, Gavg where DF.g = Gavg.g and v > avg_v")

    sqldf> row.names(a12r) <- NULL

    sqldf> identical(a12r, a12s)
    [1] TRUE

    sqldf> # same but reduce the two select statements to one using a subquery
    sqldf> a13s <- sqldf("select g, t, v
    sqldf+ from DF d1, (select g as g2, avg(v) as avg_v from DF group by g)
    sqldf+ where d1.g = g2 and v > avg_v")

    sqldf> identical(a12r, a13s)
    [1] TRUE

    sqldf> # same but shorten using natural join
    sqldf> a14s <- sqldf("select g, t, v
    sqldf+ from DF
    sqldf+ natural join (select g, avg(v) as avg_v from DF group by g)
    sqldf+ where v > avg_v")

    sqldf> identical(a12r, a14s)
    [1] TRUE

    sqldf> # table
    sqldf> a15r <- table(warpbreaks$tension, warpbreaks$wool)

    sqldf> a15s <- sqldf("select sum(wool = 'A'), sum(wool = 'B')
    sqldf+ from warpbreaks group by tension")

    sqldf> all.equal(as.data.frame.matrix(a15r), a15s, check.attributes = FALSE)
    [1] TRUE

    sqldf> # reshape
    sqldf> t.names <- paste("t", unique(as.character(DF$t)), sep = "_")

    sqldf> a16r <- reshape(DF, direction = "wide", timevar = "t", idvar = "g", varying = list(t.names))

    sqldf> a16s <- sqldf("select
    sqldf+ g,
    sqldf+ sum((t == 1) * v) t_1,
    sqldf+ sum((t == 2) * v) t_2,
    sqldf+ sum((t == 3) * v) t_3,
    sqldf+ sum((t == 4) * v) t_4,
    sqldf+ sum((t == 5) * v) t_5
    sqldf+ from DF group by g")

    sqldf> all.equal(a16r, a16s, check.attributes = FALSE)
    [1] TRUE

    sqldf> # order
    sqldf> a17r <- Formaldehyde[order(Formaldehyde$optden, decreasing = TRUE), ]

    sqldf> a17s <- sqldf("select * from Formaldehyde order by optden desc")

    sqldf> row.names(a17r) <- NULL

    sqldf> identical(a17r, a17s)
    [1] TRUE

    sqldf> # centered moving average of length 7
    sqldf> set.seed(1)

    sqldf> DF <- data.frame(x = rnorm(15, 1:15))

    sqldf> s18 <- sqldf("select a.x x, avg(b.x) movavgx from DF a, DF b
    sqldf+ where a.row_names - b.row_names between -3 and 3
    sqldf+ group by a.row_names having count(*) = 7
    sqldf+ order by a.row_names+0",
    sqldf+ row.names = TRUE)

    sqldf> r18 <- data.frame(x = DF[4:12,], movavgx = rowMeans(embed(DF$x, 7)))

    sqldf> row.names(r18) <- NULL

    sqldf> all.equal(r18, s18)
    [1] TRUE

    sqldf> # merge. a19r and a19s are same except row order and row names
    sqldf> A <- data.frame(a1 = c(1, 2, 1), a2 = c(2, 3, 3), a3 = c(3, 1, 2))

    sqldf> B <- data.frame(b1 = 1:2, b2 = 2:1)

    sqldf> a19s <- sqldf("select * from A, B")

    sqldf> a19r <- merge(A, B)

    sqldf> Sort <- function(DF) DF[do.call(order, DF),]

    sqldf> all.equal(Sort(a19s), Sort(a19r), check.attributes = FALSE)
    [1] TRUE

    sqldf> # within Date, of the highest quality records list the one closest
    sqldf> # to noon. Note use of two sql statements in one call to sqldf.
    sqldf>
    sqldf> Lines <- "DeployID Date.Time LocationQuality Latitude Longitude
    sqldf+ STM05-1 2005/02/28 17:35 Good -35.562 177.158
    sqldf+ STM05-1 2005/02/28 19:44 Good -35.487 177.129
    sqldf+ STM05-1 2005/02/28 23:01 Unknown -35.399 177.064
    sqldf+ STM05-1 2005/03/01 07:28 Unknown -34.978 177.268
    sqldf+ STM05-1 2005/03/01 18:06 Poor -34.799 177.027
    sqldf+ STM05-1 2005/03/01 18:47 Poor -34.85 177.059
    sqldf+ STM05-2 2005/02/28 12:49 Good -35.928 177.328
    sqldf+ STM05-2 2005/02/28 21:23 Poor -35.926 177.314
    sqldf+ "

    sqldf> DF <- read.table(textConnection(Lines), skip = 1, as.is = TRUE,
    sqldf+ col.names = c("Id", "Date", "Time", "Quality", "Lat", "Long"))

    sqldf> sqldf(c("create temp table DFo as select * from DF order by
    sqldf+ Date DESC, Quality DESC,
    sqldf+ abs(substr(Time, 1, 2) + substr(Time, 4, 2) /60 - 12) DESC",
    sqldf+ "select * from DFo group by Date"))
    Id Date Time Quality Lat Long
    1 STM05-2 2005/02/28 12:49 Good -35.928 177.328
    2 STM05-1 2005/03/01 18:47 Poor -34.850 177.059

    sqldf> ## Not run:
    sqldf> ##D
    sqldf> ##D # test of file connections with sqldf
    sqldf> ##D
    sqldf> ##D # create test .csv file of just 3 records
    sqldf> ##D write.table(head(iris, 3), "iris3.dat", sep = ",", quote = FALSE)
    sqldf> ##D
    sqldf> ##D # look at contents of iris3.dat
    sqldf> ##D readLines("iris3.dat")
    sqldf> ##D
    sqldf> ##D # set up file connection
    sqldf> ##D iris3 <- file("iris3.dat")
    sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
    sqldf> ##D
    sqldf> ##D # using a non-default separator
    sqldf> ##D # file.format can be an attribute of file object or an arg passed to sqldf
    sqldf> ##D write.table(head(iris, 3), "iris3.dat", sep = ";", quote = FALSE)
    sqldf> ##D iris3 <- file("iris3.dat")
    sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3', file.format = list(sep = ";"))
    sqldf> ##D
    sqldf> ##D # same but pass file.format through attribute of file object
    sqldf> ##D attr(iris3, "file.format") <- list(sep = ";")
    sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
    sqldf> ##D
    sqldf> ##D # copy file straight to disk without going through R
    sqldf> ##D # and then retrieve portion into R
    sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3', dbname = tempfile())
    sqldf> ##D
    sqldf> ##D ### same as previous example except it allows multiple queries against
    sqldf> ##D ### the database. We use iris3 from before. This time we use an
    sqldf> ##D ### in memory SQLite database.
    sqldf> ##D
    sqldf> ##D sqldf() # open a connection
    sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
    sqldf> ##D
    sqldf> ##D # At this point we have an iris3 variable in both
    sqldf> ##D # the R workspace and in the SQLite database so we need to
    sqldf> ##D # explicitly let it know we want the version in the database.
    sqldf> ##D # If we were not to do that it would try to use the R version
    sqldf> ##D # by default and fail since sqldf would prevent it from
    sqldf> ##D # overwriting the version already in the database to protect
    sqldf> ##D # the user from inadvertent errors.
    sqldf> ##D sqldf('select * from main.iris3 where "Sepal.Width" > 4')
    sqldf> ##D sqldf('select * from main.iris3 where "Sepal_Width" < 4')
    sqldf> ##D sqldf() # close connection
    sqldf> ##D
    sqldf> ##D ### another way to do this is a mix of sqldf and RSQLite statements
    sqldf> ##D ### In that case we need to fetch the connection for use with RSQLite
    sqldf> ##D ### and do not have to specifically refer to main since RSQLite can
    sqldf> ##D ### only access the database.
    sqldf> ##D
    sqldf> ##D con <- sqldf()
    sqldf> ##D # this iris3 refers to the R variable and file
    sqldf> ##D sqldf('select * from iris3 where "Sepal.Width" > 3')
    sqldf> ##D sqldf("select count(*) from iris3")
    sqldf> ##D # these iris3 refer to the database table
    sqldf> ##D dbGetQuery(con, 'select * from iris3 where "Sepal.Width" > 4')
    sqldf> ##D dbGetQuery(con, 'select * from iris3 where "Sepal.Width" < 4')
    sqldf> ##D sqldf()
    sqldf> ##D
    sqldf> ## End(Not run)

  • 相关阅读:
    BZOJ 1024: [SCOI2009]生日快乐
    BZOJ 3038: 上帝造题的七分钟2
    BZOJ 2005: [Noi2010]能量采集
    费用流&网络流模版
    BZOJ 1070: [SCOI2007]修车
    BZOJ 3039: 玉蟾宫
    BZOJ 1022: [SHOI2008]小约翰的游戏John
    BZOJ 2456: mode
    BZOJ 1015: [JSOI2008]星球大战starwar
    Unity实现IOS原生分享
  • 原文地址:https://www.cnblogs.com/speeding/p/4090332.html
Copyright © 2020-2023  润新知