• 贯通Spark Streaming JobScheduler内幕实现和深入思考


    本节主要内容:

    一、SparkStreaming Job生成深度思考

    二、SparkStreaming Job生成源码解析

    JobScheduler的地位非常的重要,所有的关键都在JobScheduler,它的重要性就相当于是Spark Core当中的DAGScheduler,因此,我们要花重点在JobScheduler上面。

    我们在进行sparkstreaming开发的时候,会对Dstream进行各种transform和action级别的操作,这些操作就构成Dstream graph,也就是Dstream 之间的依赖关系,随着时间的流逝,Dstream graph会根据batchintaval时间间隔,产生RDD的DAG,然后进行job的执行。Dstream 的Dstream graph是逻辑级别的,RDD的DAG是物理执行级别的。DStream是空间维度的层面,空间维度加上时间构成时空维度。

    JobSchedule是将逻辑级别的job物理的运行在spark core上。JobGenerator是产生逻辑级别的job,使用JobSchedule将job在线程池中运行。JobSchedule是在StreamingContext中进行实例化的,并在StreamingContext的start方法中开辟一条新的线程启动的。

    // Start the streaming scheduler in a new thread, so that thread local properties
    // like call sites and job groups can be reset without affecting those of the
    // current thread.ThreadUtils.runInNewThread("streaming-start") {

      sparkContext.setCallSite(startSite.get)

      sparkContext.clearJobGroup()

      sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")

      scheduler.start()
    }

    1.大括号中的代码作为一个匿名函数在新的线程中执行。Sparkstreaming运行时至少需要两条线程,其中一条用于一直循环接收数据,现在所说的至少两条线程和上边开辟一条新线程运行scheduler.start()并没有关系。Sparkstreaming运行时至少需要两条线程是用于作业处理的,上边的代码开辟新的线程是在调度层面的中,不论Sparkstreaming程序运行时指定多少线程,这里都会开辟一条新线程,之间没有一点关系。

    2.每一条线程都有自己私有的属性,在这里给新的线程设置私有的属性,这些属性不会影响主线程中的。

    sparkContext.setCallSite(startSite.get)
      sparkContext.clearJobGroup()
    sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")

    源码中代码的书写模式非常值得学习,以后看源码的时候就把它当做是一个普通的应用程序,从jvm的角度看,spark就是一个分布式的应用程序。不要对源码有代码崇拜情节,不然就没有掌控源码的信心。

    JobSchedule在实例化的时候会实例化JobGenerator和线程池。

    private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
    private val jobExecutor =
      ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")
    private val jobGenerator = new JobGenerator(this)

    线程池中默认是有一条线程,当然可以在spark配置文件中配置或者使用代码在sparkconf中修改默认的线程数,在一定程度上增加默认线程数可以提高执行job的效率,这也是一个性能调优的方法(尤其是在一个程序中有多个job时)。

    Java在企业生产环境下已经形成了生态系统,在spark开发中和数据库、hbase、radis、javaEE交互一般都采用java,所以开发大型spark项目大部分都是scala+java的方式进行开发。

    JobGenerator和线程池在JobSchedule在实例化的时候就已经实例化了,而eventloop和receiverTracker是在调用JobGenerator的start方法时才被实例化。def start(): Unit = synchronized {

    
      if (eventLoop != null) return // scheduler has already been started
      eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
        override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)     override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
      }
      eventLoop.start()
      receiverTracker= new ReceiverTracker(ssc)
      receiverTracker.start()
      jobGenerator.start()
    }

    在eventloop的start方法中会回调onStart方法,一般在onStart方法中会执行一些准备性的代码,在JobSchedule中虽然并没有复写onStart方法,不过sparkStreaming框架在这里显然是为了代码的可扩展性考虑的,这是开发项目时需要学习的。

    def start(): Unit = {
      if (stopped.get) {
        throw new IllegalStateException(name + " has already been stopped")
      }
      // Call onStart before starting the event thread to make sure it happens before onReceive
      onStart()
      eventThread.start()
    }

    Dstream的action级别的操作转过来还是会调用foreachRDD这个方法,生动的说明在对Dstream操作的时候其实还是对RDD的操作。def print(num: Int): Unit = ssc.withScope {

    
      def foreachFunc: (RDD[T], Time) => Unit = {
        (rdd: RDD[T], time: Time) => {
          val firstNum = rdd.take(num + 1)
          // scalastyle:off println
          println("-------------------------------------------")
          println("Time: " + time)
          println("-------------------------------------------")
          firstNum.take(num).foreach(println)
          if (firstNum.length > num) println("...")
          println()
        }
      }
      foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
    }

    上边代码中foreachFunc这个方法是对Dstream action级别的方法的进一步封装,增加了如下代码,在运行spark streaming程序时对这些输出很熟悉。

     println("-------------------------------------------")
     println("Time: " + time)
     println("-------------------------------------------")

    foreachRDD方法,转过来new ForEachDstream

    Apply a function to each RDD in this DStream. This is an output operator, so
    * 'this' DStream will be registered as an output stream and therefore materialized.
    private def foreachRDD(
        foreachFunc: (RDD[T], Time) => Unit,
        displayInnerRDDOps: Boolean): Unit = {
      new ForEachDStream(this,
        context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register()
    }

    注释中说的:将这个函数作用于这个Dstream中的每一个RDD,这是一个输出操作,因此这个Dstream会被注册成outputstream,并进行物化。

    ForEachDstream中很重要的一个函数generateJob。考虑时间维度和action级别,每个Duration都基于generateJob来生成作业。foreachFunc(rdd, time)//这个方法就是对Dstream最后的操作 ,new Job(time, jobFunc)只是在RDD的基础上,加上时间维度的封装而已。这里的Job只是一个普通的对象,代表了一个spark的计算,调用Job的run方法时,真正的作业就触发了。foreachFunc(rdd, time)中的rdd其实就是通过DstreamGraph中最后一个Dstream来决定的。

    override def generateJob(time: Time): Option[Job] = {
      parent.getOrCompute(time) match {
        case Some(rdd) =>
          val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
            foreachFunc(rdd, time)
          }
          Some(new Job(time, jobFunc))
        case None => None
      }
    }

    Jon是通过ForEachDstream的generateJob来生成的,值得注意的是在Dstream的子类中,只有ForEachDstream重写了generateJob方法。

    现在考虑一下ForEachDstream的generateJob方法是谁调用的?当然是JobGenerator。ForEachDstream的generateJob方法是静态的逻辑级别,他如果想要真正运行起来变成物理级别的这时候就需要JobGenerator。

    现在就来看看JobGenerator的代码,JobGenerator中有一个定时器timer和消息循环体eventloop,timer会基于batchinteval,一直向eventloop中发送JenerateJobs的消息,进而导致processEvent方法->generateJobs方法的执行。

    private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
      longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
    eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
      override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event)
      override protected def onError(e: Throwable): Unit = {
        jobScheduler.reportError("Error in job generator", e)
      }
    }

    generateJobs方法的代码:

    private def generateJobs(time: Time) {
      SparkEnv.set(ssc.env)
      Try {
        jobScheduler.receiverTracker.allocateBlocksToBatch(time)
        graph.generateJobs(time) // generate jobs using allocated block

    graph.generateJobs(time)这个方法的代码:

    defgenerateJobs(time: Time): Seq[Job] = {
      logDebug("Generating jobs for time " + time)
      val jobs = this.synchronized {
        outputStreams.flatMap { outputStream =>
          val jobOption = outputStream.generateJob(time)
          jobOption.foreach(_.setCallSite(outputStream.creationSite))
          jobOption
        }
      }
      logDebug("Generated " + jobs.length + " jobs for time " + time)
      jobs
    }

    其中的outputStream.generateJob(time)中的outputStream就是前面说ForEachDstream,generateJob(time)方法就是ForEachDstream中的generateJob(time)方法。

    这是从时间维度调用空间维度的东西,所以时空结合就转变成物理的执行了。

    再来看看JobGenerator的generateJobs方法:

    Try {
      jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
      case Success(jobs) =>
        val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
        jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
    }
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))

    基于graph.generateJobs产生job后,会封装成JobSet并提交给JobScheduler,JobSet(time, jobs, streamIdToInputInfos),其中streamIdToInputInfos就是接收的数据的元数据。

    JobSet代表了一个batch duration中的一批jobs。就是一个普通对象,包含了未提交的jobs,提交的时间,执行开始和结束时间等信息。

    JobSet提交给JobScheduler后,会放入jobSets数据结构中,jobSets.put(jobSet.time, jobSet) ,所以JobScheduler就拥有了每个batch中的jobSet.在线程池中进行执行。

    def submitJobSet(jobSet: JobSet) {
      if (jobSet.jobs.isEmpty) {
        logInfo("No jobs added for time " + jobSet.time)
      } else {
        listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
        jobSets.put(jobSet.time, jobSet)
        jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
        logInfo("Added jobs for time " + jobSet.time)
      }
    }

    在把job放入线程池中时,采用JonHandler进行封装。JonHandler是一个Runable接口的实例。

    其中主要的代码就是job.run(),前面说过job.run()调用的就是Dstream的action级别的方法。

    在job.run()前后会发送JonStarted和JobCompleted的消息,JobScheduler接收到这两个消息只是记录一下时间,通知一下job要开始执行或者执行完成,并没有过多的操作。

     _eventLoop.post(JobStarted(job, clock.getTimeMillis()))

    PairRDDFunctions.disableOutputSpecValidation.withValue(true) {

      job.run()
    }
    _eventLoop = eventLoop
    if (_eventLoop != null) {
      _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
    }

    Spark发行版笔记7

    新浪微博:http://weibo.com/ilovepains

    微信公众号:DT_Spark

    博客:http://blog.sina.com.cn/ilovepains

    手机:18610086859

    QQ:1740415547

    邮箱:18610086859@vip.126.com

     
  • 相关阅读:
    Oracle 的merge into 用法
    个人博客作业——结课总结
    个人博客作业week7
    结对项目总结博客
    #个人博客作业week3——微软必应词典的使用
    #个人博客作业week2——结对编程伙伴代码复审
    #个人博客作业week2——关于代码规范的个人观点
    #个人博客作业——目前流行的源程序版本管理软件和项目管理软件优缺点
    个人项目——四则运算题目的随机生成
    #个人博客作业Week1——浏览教材后提出的六个问题及软件与软件工程的提出。
  • 原文地址:https://www.cnblogs.com/sparkbigdata/p/5515797.html
Copyright © 2020-2023  润新知