• Django ORM查询总结


    employee models

    import os
    import django
    
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'salary.settings')
    django.setup(set_prefix=False)
    
    
    from employee.models import Employee, Salary, Department, Dept_emp
    from students.models import Student, Score
    from django.db.models import Q, Avg, Sum, Max, Min, Count
    
    emps = Employee.objects.all()
    smps = Salary.objects
    dmps = Department.objects
    demps = Dept_emp.objects
    
    # --- 多对多查询
    
    # 查询10010员工的所在的部门编号及员工信息
    # es = emps.get(pk=10010)
    # ed = es.dept_emp_set.all() # 记得加all(),不然会返回None
    # print(es)
    # print(ed)
    
    
    # for i in ed:
        # print(type(i), i)
        # e = i.emp_no
        # print(type(e), e)
        # d = i.dept_no
        # print(type(d), d, d.dept_no, d.dept_name)
    
    # --- 一对多查询
    
    # print(smps.all())
    # print(smps.filter(pk__gt=30)) # 直接用Salary.objects即可管理
    #
    # print(*Employee.__dict__.items(), sep='
    ')
    # print('-'*30)
    # print(*Salary.__dict__.items(), sep='
    ')
    
    # 查询1004号员工的所有工资(建议从"一"端查,只查询一次)
    # print(emps.get(pk=10004).salary_set.all()) # 记得加all()
    
    # 工资大于55000的所有员工的姓名
    # print(smps.filter(salary__gt=55000).values('emp_no').distinct())
    
    # 查询1004号员工的所有工资及姓名(建议从"一"端查,只查询一次)
    # print(emps.get(pk=10004).salary_set.all()) # 记得加all()
    # print(emps.get(pk=10004).name)
    
    # 查询工资大于55000的所有员工姓名(emp_no仅表示关系,salary_set,emp_no才是2个表真正用的属性)
    # nos = smps.filter(salary__gt=55000)
    # names = set()
    # for i in nos:
    #     names.add(i.emp_no.name)
    # print(names)
    # 查询10004员工所有工资及姓名
    # slist = list(smps.filter(emp_no=10004).filter(salary__gt=55000))
    # for s in slist:
    #     print(s.emp_no.name, s.emp_no_id, s.salary) # s.emp_no 这里的emp_no表示【关系】
    
    # 员工大于55000的所有员工的姓名
    #
    # sql = """
    # SELECT DISTINCT e.emp_no, e.first_name, e.last_name
    # FROM employees e JOIN salaries s
    # ON e.emp_no=s.emp_no
    # WHERE s.salary > 55000
    # """
    # # print(emps.raw(sql)) #惰性的set
    # print(list(emps.raw(sql)))
    
    
    # --- 缓存验证
    
    # print(emps)
    # print(*emps, sep='
    ')
    # print(emps[0].gender, emps[0].get_gender_display())
    
    # print(type(emps))
    # print(1, emps)
    # print(2, emps)
    # print(3, emps[0])
    # print(4, emps[0])
    # print(emps._result_cache)
    # # 上面共查询了4次数据库,emps._result_cache为None,说明emps是惰性的
    
    # print(type(emps)) # QuerySet查询集
    # print(list(emps)) # print(*emps) 先遍历一遍,缓存住
    # print(1, emps)
    # print(2, emps)
    # print(3, emps[0])
    # print(4, emps[:])
    # print(emps._result_cache) # 结果集列表
    # # 上面list(emps)进行了缓存,所以下面4个就不进行查询了,直接利用了缓存,综合查询了1次
    
    # # --- 切片和步长
    # print(emps[10:15])
    # print(emps[20:30])
    # print(emps[0:20:5])
    # print(emps[::5])
    
    # # --- 结果集查询
    # print(emps.values())
    # print(emps.filter(pk=10010).values())
    # print(emps.exclude(emp_no=10001))
    # print(emps.exclude(emp_no=10002).order_by('emp_no'))
    # print(emps.exclude(emp_no=10002).order_by('-pk'))
    # print(emps.exclude(emp_no=10002).order_by('-pk').values())
    # # values返回的集合里的元素是字典
    
    # # --- 单值查询
    # print(emps.filter(pk=10010).get())
    # print(emps.get(pk=10001))
    # #print(emps.exclude(pk=10010).get()) # get严格一个
    # print(emps.first()) # limit 1
    # print(emps.exclude(pk=10010).last()) # desc, limit 1
    # print(emps.filter(pk=10010, gender=1).first()) # AND,找不到返回None
    # print(emps.count())
    # print(emps.exclude(pk=10010).count())
    
    # # --- LOOKUP表达式
    # print(emps.filter(emp_no__exact=10010)) # 就是等于,所以很少用exact
    # print(emps.filter(pk__in=[10010, 10009]))
    # print(emps.filter(last_name__startswith='P'))
    # print(emps.exclude(pk__gt=10003))
    
    # # --- Q对象
    # print(emps.filter(Q(pk__lt=10006))) # 不如直接写filter(pk__lt=10006)
    # # 下面几句一样
    # print(emps.filter(pk__gt=10003).filter(pk__lt=10006)) # 与
    # print(emps.filter(pk__gt=10003, pk__lt=10006)) # 与
    # print(emps.filter(Q(pk__gt=10003), Q(pk__lt=10006)))
    # print(emps.filter(Q(pk__gt=10003) & Q(pk__lt=10006))) # 与
    # print(emps.filter(pk__gt=10003) & emps.filter(pk__lt=10006))
    # # 下面几句等价
    # print(emps.filter(pk__in=[10003, 10006])) # in
    # print(emps.filter(Q(pk=10003) | Q(pk=10006))) # 或
    # print(emps.filter(pk=10003) | emps.filter(pk=10006))
    #
    # print(emps.filter(~Q(pk__gt=10003))) # 非
    # # 可使用&|和Q对象来构造复杂的逻辑表达式,可以使用一个或多个Q对象。
    # # 如果混用关键字参数和Q对象,那么Q对象必须位于关键字参数的前面。
    
    # --- 聚合分组
    
    # # aggregate() 返回字典,方便使用
    # print(emps.filter(pk__gt=10010).count()) # 单值
    # print(emps.filter(pk__gt=10010).aggregate(Count('pk'), Max('pk'))) # 字典
    # print(emps.filter(pk__lte=10010).aggregate(Avg('pk')))
    # print(emps.aggregate(Max('pk'), min=Min('pk'))) # 别名
    
    # # annotate()方法用来分组聚合,返回查询集。
    # print(emps.filter(pk__gt=10010).aggregate(Count('pk'))) # 字典
    # s = emps.filter(pk__gt=10010).annotate(Count('pk')) # 返回查询集,没指定分组字段,
    # # print(s)
    # # 使用主键分组
    # for x in s:
    #     print(x)
    #     print(x.__dict__) # 里面多了一个属性pk__count
    
    # # values()方法,放在annotate前就是指定分组字段,之后就是取结果中的字段。
    # s = emps.filter(pk__gt=10010).values('gender').annotate(Count('pk')) # 查询集
    # print(s)
    # for x in s:
    #     print(x) # 字典
    
    # s = emps.filter(pk__gt=10010).values('gender').annotate(c=Count('pk')).order_by('-c') # 查询集
    # print(s)
    # for x in s:
    #     print(x) # 字典
    
    # s = emps.filter(pk__gt=10010).values('gender').annotate(Avg('pk'), c=Count('pk')).order_by('-c').values('pk__avg', 'c') # 查询集,但后面的values过滤了每个对象字典的key
    # print(s)
    # for x in s:
    #     print(x) # 字典
    
    
    
    # --- 练习题(记得用test2数据库)
    
    # # # 导入数据
    #
    # stu_list = [('王一涵',10),('张青阳',12),('韩名博',12),('王梓',13),('骆铭峰',11),('赢乘风',11),('林烽',10),('吴博文',12),('马小文',12)]
    # sco_list = [(1,'语文',90,'王一涵'),(2,'数学',80,'王一涵'),(3,'英语',75,'王一涵'),(4,'语文',95,'张青阳'),(5,'数学',90,'张青阳'),(6,'英语',98,'张青阳'),(7,'语文',80,'韩名博'),(8,'数学',89,'韩名博'),(9,'英语',70,'韩名博'),(10,'语文',60,'王梓'),(11,'数学',75,'王梓'),(12,'英语',65,'王梓'),(13,'语文',81,'骆铭峰'),(14,'数学',82,'骆铭峰'),(15,'英语',55,'骆铭峰'),(16,'语文',78,'赢乘风'),(17,'数学',89,'赢乘风'),(18,'英语',65,'赢乘风'),(19,'语文',89,'林烽'),(20,'数学',60,'林烽'),(21,'英语',49,'林烽'),(22,'语文',89,'吴博文'),(23,'数学',92,'吴博文'),(24,'英语',79,'吴博文'),(25,'语文',50,'马小文'),(26,'数学',60,'马小文'),(27,'英语',62,'马小文')]
    #
    # for k,v in stu_list:
    #     Student(k,v).save()
    #
    # for s1,s2,s3,s4 in sco_list:
    #     Score(s1,s2,s3,s4).save()
    #
    #
    # # 查询
    #
    # stu = Student.objects.all()
    # sco = Score.objects.all()
    #
    # # 总成绩大于250分的学生信息
    # print(sco.values('name').annotate(Sum('score')).filter(score__sum__gt=250))
    # # 语文成绩在80-90分之间的学生信息
    # print(sco.filter(exam_subjects='语文').filter(score__gt=80,score__lt=90))
    # # 有一门科目低于60分的学生信息
    # print(sco.filter(score__lt=60).values('name').annotate())
    # # 平均分70以上的学生信息
    # print(sco.values('name').annotate(Avg('score')).filter(score__avg__gt=70))
    # # 三门成绩都大于90分的学生姓名
    # print(sco.filter(score__gte=90).values('name').annotate(Count('score')).filter(score__count=3))

    students models

    from django.db import models
    
    # Create your models here.
    
    class Student(models.Model):
        class Mate:
            db_table = 'students'
    
        # id = models.AutoField(primary_key=True)
        name = models.CharField(primary_key=True, max_length=30, verbose_name='姓名')
        age = models.PositiveSmallIntegerField(verbose_name='年龄')
    
        def __repr__(self):
            return '{} {}'.format(self.name, self.age)
    
        __str__ = __repr__
    
    class Score(models.Model):
        class Mate:
            db_table = 'scroes'
    
        id = models.AutoField(primary_key=True)
        exam_subjects = models.CharField(max_length=40, verbose_name='科目')
        score = models.PositiveSmallIntegerField(verbose_name='分数')
        name = models.ForeignKey(Student, db_column='name', on_delete=models.CASCADE)
        # to_field = name (默认用的Studentde主键)
        # name表示关系,db_column='name'的name表示数据库显示的名称(数据库用的名称),ORM真正与数据的name对应的却是name_id
    
        def __repr__(self):
            return '{} {} {}'.format(self.exam_subjects, self.score, self.name_id)
    
        __str__ = __repr__

    test.py

    import os
    import django
    
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'salary.settings')
    django.setup(set_prefix=False)
    
    
    from employee.models import Employee, Salary, Department, Dept_emp
    from students.models import Student, Score
    from django.db.models import Q, Avg, Sum, Max, Min, Count
    
    emps = Employee.objects.all()
    smps = Salary.objects
    dmps = Department.objects
    demps = Dept_emp.objects
    
    # --- 多对多查询
    
    # 查询10010员工的所在的部门编号及员工信息
    # es = emps.get(pk=10010)
    # ed = es.dept_emp_set.all() # 记得加all(),不然会返回None
    # print(es)
    # print(ed)
    
    
    # for i in ed:
        # print(type(i), i)
        # e = i.emp_no
        # print(type(e), e)
        # d = i.dept_no
        # print(type(d), d, d.dept_no, d.dept_name)
    
    # --- 一对多查询
    
    # print(smps.all())
    # print(smps.filter(pk__gt=30)) # 直接用Salary.objects即可管理
    #
    # print(*Employee.__dict__.items(), sep='
    ')
    # print('-'*30)
    # print(*Salary.__dict__.items(), sep='
    ')
    
    # 查询1004号员工的所有工资(建议从"一"端查,只查询一次)
    # print(emps.get(pk=10004).salary_set.all()) # 记得加all()
    
    # 工资大于55000的所有员工的姓名
    # print(smps.filter(salary__gt=55000).values('emp_no').distinct())
    
    # 查询1004号员工的所有工资及姓名(建议从"一"端查,只查询一次)
    # print(emps.get(pk=10004).salary_set.all()) # 记得加all()
    # print(emps.get(pk=10004).name)
    
    # 查询工资大于55000的所有员工姓名(emp_no仅表示关系,salary_set,emp_no才是2个表真正用的属性)
    # nos = smps.filter(salary__gt=55000)
    # names = set()
    # for i in nos:
    #     names.add(i.emp_no.name)
    # print(names)
    # 查询10004员工所有工资及姓名
    # slist = list(smps.filter(emp_no=10004).filter(salary__gt=55000))
    # for s in slist:
    #     print(s.emp_no.name, s.emp_no_id, s.salary) # s.emp_no 这里的emp_no表示【关系】
    
    # 员工大于55000的所有员工的姓名
    #
    # sql = """
    # SELECT DISTINCT e.emp_no, e.first_name, e.last_name
    # FROM employees e JOIN salaries s
    # ON e.emp_no=s.emp_no
    # WHERE s.salary > 55000
    # """
    # # print(emps.raw(sql)) #惰性的set
    # print(list(emps.raw(sql)))
    
    
    # --- 缓存验证
    
    # print(emps)
    # print(*emps, sep='
    ')
    # print(emps[0].gender, emps[0].get_gender_display())
    
    # print(type(emps))
    # print(1, emps)
    # print(2, emps)
    # print(3, emps[0])
    # print(4, emps[0])
    # print(emps._result_cache)
    # # 上面共查询了4次数据库,emps._result_cache为None,说明emps是惰性的
    
    # print(type(emps)) # QuerySet查询集
    # print(list(emps)) # print(*emps) 先遍历一遍,缓存住
    # print(1, emps)
    # print(2, emps)
    # print(3, emps[0])
    # print(4, emps[:])
    # print(emps._result_cache) # 结果集列表
    # # 上面list(emps)进行了缓存,所以下面4个就不进行查询了,直接利用了缓存,综合查询了1次
    
    # # --- 切片和步长
    # print(emps[10:15])
    # print(emps[20:30])
    # print(emps[0:20:5])
    # print(emps[::5])
    
    # # --- 结果集查询
    # print(emps.values())
    # print(emps.filter(pk=10010).values())
    # print(emps.exclude(emp_no=10001))
    # print(emps.exclude(emp_no=10002).order_by('emp_no'))
    # print(emps.exclude(emp_no=10002).order_by('-pk'))
    # print(emps.exclude(emp_no=10002).order_by('-pk').values())
    # # values返回的集合里的元素是字典
    
    # # --- 单值查询
    # print(emps.filter(pk=10010).get())
    # print(emps.get(pk=10001))
    # #print(emps.exclude(pk=10010).get()) # get严格一个
    # print(emps.first()) # limit 1
    # print(emps.exclude(pk=10010).last()) # desc, limit 1
    # print(emps.filter(pk=10010, gender=1).first()) # AND,找不到返回None
    # print(emps.count())
    # print(emps.exclude(pk=10010).count())
    
    # # --- LOOKUP表达式
    # print(emps.filter(emp_no__exact=10010)) # 就是等于,所以很少用exact
    # print(emps.filter(pk__in=[10010, 10009]))
    # print(emps.filter(last_name__startswith='P'))
    # print(emps.exclude(pk__gt=10003))
    
    # # --- Q对象
    # print(emps.filter(Q(pk__lt=10006))) # 不如直接写filter(pk__lt=10006)
    # # 下面几句一样
    # print(emps.filter(pk__gt=10003).filter(pk__lt=10006)) # 与
    # print(emps.filter(pk__gt=10003, pk__lt=10006)) # 与
    # print(emps.filter(Q(pk__gt=10003), Q(pk__lt=10006)))
    # print(emps.filter(Q(pk__gt=10003) & Q(pk__lt=10006))) # 与
    # print(emps.filter(pk__gt=10003) & emps.filter(pk__lt=10006))
    # # 下面几句等价
    # print(emps.filter(pk__in=[10003, 10006])) # in
    # print(emps.filter(Q(pk=10003) | Q(pk=10006))) # 或
    # print(emps.filter(pk=10003) | emps.filter(pk=10006))
    #
    # print(emps.filter(~Q(pk__gt=10003))) # 非
    # # 可使用&|和Q对象来构造复杂的逻辑表达式,可以使用一个或多个Q对象。
    # # 如果混用关键字参数和Q对象,那么Q对象必须位于关键字参数的前面。
    
    # --- 聚合分组
    
    # # aggregate() 返回字典,方便使用
    # print(emps.filter(pk__gt=10010).count()) # 单值
    # print(emps.filter(pk__gt=10010).aggregate(Count('pk'), Max('pk'))) # 字典
    # print(emps.filter(pk__lte=10010).aggregate(Avg('pk')))
    # print(emps.aggregate(Max('pk'), min=Min('pk'))) # 别名
    
    # # annotate()方法用来分组聚合,返回查询集。
    # print(emps.filter(pk__gt=10010).aggregate(Count('pk'))) # 字典
    # s = emps.filter(pk__gt=10010).annotate(Count('pk')) # 返回查询集,没指定分组字段,
    # # print(s)
    # # 使用主键分组
    # for x in s:
    #     print(x)
    #     print(x.__dict__) # 里面多了一个属性pk__count
    
    # # values()方法,放在annotate前就是指定分组字段,之后就是取结果中的字段。
    # s = emps.filter(pk__gt=10010).values('gender').annotate(Count('pk')) # 查询集
    # print(s)
    # for x in s:
    #     print(x) # 字典
    
    # s = emps.filter(pk__gt=10010).values('gender').annotate(c=Count('pk')).order_by('-c') # 查询集
    # print(s)
    # for x in s:
    #     print(x) # 字典
    
    # s = emps.filter(pk__gt=10010).values('gender').annotate(Avg('pk'), c=Count('pk')).order_by('-c').values('pk__avg', 'c') # 查询集,但后面的values过滤了每个对象字典的key
    # print(s)
    # for x in s:
    #     print(x) # 字典
    
    
    
    # --- 练习题(记得用test2数据库)
    
    # # # 导入数据
    #
    # stu_list = [('王一涵',10),('张青阳',12),('韩名博',12),('王梓',13),('骆铭峰',11),('赢乘风',11),('林烽',10),('吴博文',12),('马小文',12)]
    # sco_list = [(1,'语文',90,'王一涵'),(2,'数学',80,'王一涵'),(3,'英语',75,'王一涵'),(4,'语文',95,'张青阳'),(5,'数学',90,'张青阳'),(6,'英语',98,'张青阳'),(7,'语文',80,'韩名博'),(8,'数学',89,'韩名博'),(9,'英语',70,'韩名博'),(10,'语文',60,'王梓'),(11,'数学',75,'王梓'),(12,'英语',65,'王梓'),(13,'语文',81,'骆铭峰'),(14,'数学',82,'骆铭峰'),(15,'英语',55,'骆铭峰'),(16,'语文',78,'赢乘风'),(17,'数学',89,'赢乘风'),(18,'英语',65,'赢乘风'),(19,'语文',89,'林烽'),(20,'数学',60,'林烽'),(21,'英语',49,'林烽'),(22,'语文',89,'吴博文'),(23,'数学',92,'吴博文'),(24,'英语',79,'吴博文'),(25,'语文',50,'马小文'),(26,'数学',60,'马小文'),(27,'英语',62,'马小文')]
    #
    # for k,v in stu_list:
    #     Student(k,v).save()
    #
    # for s1,s2,s3,s4 in sco_list:
    #     Score(s1,s2,s3,s4).save()
    #
    #
    # # 查询
    #
    # stu = Student.objects.all()
    # sco = Score.objects.all()
    #
    # # 总成绩大于250分的学生信息
    # print(sco.values('name').annotate(Sum('score')).filter(score__sum__gt=250))
    # # 语文成绩在80-90分之间的学生信息
    # print(sco.filter(exam_subjects='语文').filter(score__gt=80,score__lt=90))
    # # 有一门科目低于60分的学生信息
    # print(sco.filter(score__lt=60).values('name').annotate())
    # # 平均分70以上的学生信息
    # print(sco.values('name').annotate(Avg('score')).filter(score__avg__gt=70))
    # # 三门成绩都大于90分的学生姓名
    # print(sco.filter(score__gte=90).values('name').annotate(Count('score')).filter(score__count=3))

    settings.py

    """
    Django settings for salary project.
    
    Generated by 'django-admin startproject' using Django 3.2.6.
    
    For more information on this file, see
    https://docs.djangoproject.com/en/3.2/topics/settings/
    
    For the full list of settings and their values, see
    https://docs.djangoproject.com/en/3.2/ref/settings/
    """
    
    from pathlib import Path
    
    # Build paths inside the project like this: BASE_DIR / 'subdir'.
    BASE_DIR = Path(__file__).resolve().parent.parent
    
    
    # Quick-start development settings - unsuitable for production
    # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/
    
    # SECURITY WARNING: keep the secret key used in production secret!
    SECRET_KEY = 'django-insecure-(uouz1h2%5ey)2+n6o8efxd+p+h!@m&we+1%6erp6ng79j9p#2'
    
    # SECURITY WARNING: don't run with debug turned on in production!
    DEBUG = True
    
    ALLOWED_HOSTS = []
    
    
    # Application definition
    
    INSTALLED_APPS = [
        'django.contrib.admin',
        'django.contrib.auth',
        'django.contrib.contenttypes',
        'django.contrib.sessions',
        'django.contrib.messages',
        'django.contrib.staticfiles',
        'employee',
        'students',
    ]
    
    MIDDLEWARE = [
        'django.middleware.security.SecurityMiddleware',
        'django.contrib.sessions.middleware.SessionMiddleware',
        'django.middleware.common.CommonMiddleware',
        'django.middleware.csrf.CsrfViewMiddleware',
        'django.contrib.auth.middleware.AuthenticationMiddleware',
        'django.contrib.messages.middleware.MessageMiddleware',
        'django.middleware.clickjacking.XFrameOptionsMiddleware',
    ]
    
    ROOT_URLCONF = 'salary.urls'
    
    TEMPLATES = [
        {
            'BACKEND': 'django.template.backends.django.DjangoTemplates',
            'DIRS': [],
            'APP_DIRS': True,
            'OPTIONS': {
                'context_processors': [
                    'django.template.context_processors.debug',
                    'django.template.context_processors.request',
                    'django.contrib.auth.context_processors.auth',
                    'django.contrib.messages.context_processors.messages',
                ],
            },
        },
    ]
    
    WSGI_APPLICATION = 'salary.wsgi.application'
    
    
    # Database
    # https://docs.djangoproject.com/en/3.2/ref/settings/#databases
    
    DATABASES = {
        'default': {
            'ENGINE': 'django.db.backends.mysql',
            'OPTIONS': {'charset': 'utf8'},
            'NAME': 'test',
            'USER': 'soymilk',
            'PASSWORD': '123456',
            'HOST': '172.16.241.2',
            'PORT': '3306',
        }
    }
    
    
    # Password validation
    # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators
    
    AUTH_PASSWORD_VALIDATORS = [
        {
            'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
        },
        {
            'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
        },
        {
            'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
        },
        {
            'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
        },
    ]
    
    
    # Internationalization
    # https://docs.djangoproject.com/en/3.2/topics/i18n/
    
    LANGUAGE_CODE = 'zh-Hans' # 'en-us'
    
    TIME_ZONE = 'Asia/Shanghai'
    
    USE_I18N = True
    
    USE_L10N = True
    
    USE_TZ = True
    
    
    # Static files (CSS, JavaScript, Images)
    # https://docs.djangoproject.com/en/3.2/howto/static-files/
    
    STATIC_URL = '/static/'
    
    # Default primary key field type
    # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
    
    DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
    
    LOGGING = {
        'version': 1,
        'disable_existing_loggers': False,
        'handlers': {
            'console': {
                'class': 'logging.StreamHandler',
            },
        },
    
        'loggers': {
            'django.db.backends': {
                'handlers': ['console'],
                'level': 'DEBUG',
            },
        },
    }
  • 相关阅读:
    JavaScript 循环绑定之变量污染
    JavaScript 函数初级
    JavaScript 异常处理
    JavaScript 分支结构
    定位布局
    浮动布局
    css 伪类选择器
    readlink、find-exec参数、file命令
    pwd命令和修改PS1环境变量在bash行的显示
    split、paste命令
  • 原文地址:https://www.cnblogs.com/soymilk2019/p/15151396.html
Copyright © 2020-2023  润新知