• 我们究竟什么时候可以使用Ehcache缓存(转)


    一、Ehcache是什么

    EhCache是Hibernate的二级缓存技术之一,可以把查询出来的数据存储在内存或者磁盘,节省下次同样查询语句再次查询数据库,大幅减轻数据库压力。

    二、Ehcache的使用场景是什么

    1、首先最主要就是页面缓存。
    网站页面的数据来源非常广泛的,大多数来自不同的对象,而且有可能来自不同的db,所以给页面做缓存是一个不错的主意。

    2、常用数据的缓存
    一些配置信息,如后台的某些不经常改变的设置都可以缓存起来。

    三、Ehcache使用的注意点

    1、比较少的更新数据表的情况
    2、对并发要求不是很严格的情况
    多台应用服务器中的缓存是不能进行实时同步的。
    3、对一致性要求不高的情况下
    因为Ehcache本地缓存的特性,目前无法很好的解决不同服务器间缓存同步的问题,所以我们在一致性要求非常高的场合下,尽量使用Redis、Memcached等集中式缓存。

    四、Ehcache在集群、分布式的情况下表现如何

    在分布式情况下有二种同步方式:
    1、RMI组播方式


    Paste_Image.png


    示例:

    <cacheManagerPeerProviderFactory
            class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
            properties="peerDiscovery=automatic, multicastGroupAddress=localhost,
            multicastGroupPort=4446,timeToLive=255"/>

    原理:当缓存改变时,ehcache会向组播IP地址和端口号发送RMI UDP组播包。
    缺陷:Ehcache的组播做得比较初级,功能只是基本实现(比如简单的一个HUB,接两台单网卡的服务器,互相之间组播同步就没问题),对一些复杂的环境(比如多台服务器,每台服务器上多地址,尤其是集群,存在一个集群地址带多个物理机,每台物理机又带多个虚拟站的子地址),就容易出现问题。

    2、P2P方式
    原理:P2P要求每个节点的Ehcache都要指向其他的N-1个节点。

    3、JMS消息模式


    Paste_Image.png


    原理:这种模式的核心就是一个消息队列,每个应用节点都订阅预先定义好的主题,同时,节点有元素更新时,也会发布更新元素到主题中去。各个应用服务器节点通过侦听MQ获取到最新的数据,然后分别更新自己的Ehcache缓存,Ehcache默认支持ActiveMQ,我们也可以通过自定义组件的方式实现类似Kafka,RabbitMQ。

    4、Cache Server模式
    原理:这种模式会存在主从节点。


    Paste_Image.png

    缺陷:缓存容易出现数据不一致的问题,

    五、使用Ehcache的瓶颈是什么

    1、缓存漂移(Cache Drift):每个应用节点只管理自己的缓存,在更新某个节点的时候,不会影响到其他的节点,这样数据之间可能就不同步了。

    2、数据库瓶颈(Database Bottlenecks ):对于单实例的应用来说,缓存可以保护数据库的读风暴;但是,在集群的环境下,每一个应用节点都要定期保持数据最新,节点越多,要维持这样的情况对数据库的开销也越大。

    六、实际工作中如何使用Ehcache

    在实际工作中,我更多是将Ehcache作为与Redis配合的二级缓存。
    第一种方式:


    Paste_Image.png


    注:
    这种方式通过应用服务器的Ehcache定时轮询Redis缓存服务器更同步更新本地缓存,缺点是因为每台服务器定时Ehcache的时间不一样,那么不同服务器刷新最新缓存的时间也不一样,会产生数据不一致问题,对一致性要求不高可以使用。

    第二种方式:


    Paste_Image.png


    注:
    通过引入了MQ队列,使每台应用服务器的Ehcache同步侦听MQ消息,这样在一定程度上可以达到准同步更新数据,通过MQ推送或者拉取的方式,但是因为不同服务器之间的网络速度的原因,所以也不能完全达到强一致性。基于此原理使用Zookeeper等分布式协调通知组件也是如此。

    总结:
    1、使用二级缓存的好处是减少缓存数据的网络传输开销,当集中式缓存出现故障的时候,Ehcache等本地缓存依然能够支撑应用程序正常使用,增加了程序的健壮性。另外使用二级缓存策略可以在一定程度上阻止缓存穿透问题。

    2、根据CAP原理我们可以知道,如果要使用强一致性缓存(根据自身业务决定),集中式缓存是最佳选择,如(Redis,Memcached等)。



    文/小程故事多(简书作者)
    原文链接:http://www.jianshu.com/p/2cd6ad416a5a
    著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。

    分布式领域CAP理论,
    Consistency(一致性), 数据一致更新,所有数据变动都是同步的
    Availability(可用性), 好的响应性能
    Partition tolerance(分区容错性) 可靠性

    定理:任何分布式系统只可同时满足二点,没法三者兼顾。
    忠告:架构师不要将精力浪费在如何设计能满足三者的完美分布式系统,而是应该进行取舍。

    关系数据库的ACID模型拥有 高一致性 + 可用性 很难进行分区:
    Atomicity原子性:一个事务中所有操作都必须全部完成,要么全部不完成。
    Consistency一致性. 在事务开始或结束时,数据库应该在一致状态。
    Isolation隔离层. 事务将假定只有它自己在操作数据库,彼此不知晓。
    Durability. 一旦事务完成,就不能返回。
    跨数据库事务:2PC (two-phase commit), 2PC is the anti-scalability pattern (Pat Helland) 是反可伸缩模式的,JavaEE中的JTA事务可以支持2PC。因为2PC是反模式,尽量不要使用2PC,使用BASE来回避。

    BASE模型反ACID模型,完全不同ACID模型,牺牲高一致性,获得可用性或可靠性:
    Basically Available基本可用。支持分区失败(e.g. sharding碎片划分数据库)
    Soft state软状态 状态可以有一段时间不同步,异步。
    Eventually consistent最终一致,最终数据是一致的就可以了,而不是时时高一致。

    BASE思想的主要实现有
    1.按功能划分数据库
    2.sharding碎片

    BASE思想主要强调基本的可用性,如果你需要High 可用性,也就是纯粹的高性能,那么就要以一致性或容错性为牺牲,BASE思想的方案在性能上还是有潜力可挖的。

    现在NoSQL运动丰富了拓展了BASE思想,可按照具体情况定制特别方案,比如忽视一致性,获得高可用性等等,NOSQL应该有下面两个流派:
    1. Key-Value存储,如Amaze Dynamo等,可根据CAP三原则灵活选择不同倾向的数据库产品。
    2. 领域模型 + 分布式缓存 + 存储 (Qi4j和NoSQL运动),可根据CAP三原则结合自己项目定制灵活的分布式方案,难度高。

    这两者共同点:都是关系数据库SQL以外的可选方案,逻辑随着数据分布,任何模型都可以自己持久化,将数据处理和数据存储分离,将读和写分离,存储可以是异步或同步,取决于对一致性的要求程度。

    不同点:NOSQL之类的Key-Value存储产品是和关系数据库头碰头的产品BOX,可以适合非Java如PHP RUBY等领域,是一种可以拿来就用的产品,而领域模型 + 分布式缓存 + 存储是一种复杂的架构解决方案,不是产品,但这种方式更灵活,更应该是架构师必须掌握的。

    BASE讲究soft state,这种状态是一种非即时性的状态,是一种无连接,或者说是尽量短连接的状态,而ACID是讲究强的一致性,要求即时性的事务hard state,这是一种完全面向连接的状态。强的一致性就以牺牲性能和高可用性为代价,目前 JDON的风格是一种符合BASE策略的架构风格。

    http://www.jdon.com/37625

  • 相关阅读:
    字符串的字典排序
    最长上升子序列LIS(Longest Increasing Subsequence)
    小猴子下落
    二叉树的遍历
    7,Uipath实践-从零开始写demo-UiPath Foreach循环
    6,UiPath实践-从零开始写demo-if判断
    5,Uipath实践-从零开始写demo-调试Get Mail
    3,UiPath实践-从零开始写demo-读取Email
    4,Uipath实践-从零开始写demo-Uipath调试
    2,UiPath探索-Hello World
  • 原文地址:https://www.cnblogs.com/softidea/p/5548307.html
Copyright © 2020-2023  润新知