• hdu 1754 树状数组求最大值


    1. #include <stdio.h>
    2. #include <string>
    3. #define MAX(a,b) (a>b?a:b)
    4. #define Lowbit(x) (x & (-x))
    5. int idx[200010], num[200010];
    6. /*int Lowbit(int x)
    7. {
    8. return x&(-x);
    9. }*/
    10. /*int MAX(int x, int y)
    11. {
    12. return x > y ? x:y;
    13. }*/
    14. /*
    15. 对于区间 [l,r] 把该区间转化为多个的小区间再进行求最值,
    16. 方法是从后往前对每一个索引数的范围进行判断, 如在进行到第k项时,
    17. 该数控制的范围是 [k-Lowbit(k)+1,k], 如果k-Lowbit(k)+1在所求的范围内的话则将该区间的最值加入最值的判断,
    18. 然后转至地k-Lowbit(k),否则的话就只对第k个数进行最值判断,然后转至k-1
    19. */
    20. int Query(int l,int r)
    21. {
    22. int ans=num[r];
    23. while(true){
    24. ans=MAX(ans,num[r]);
    25. if(r==l) break;
    26. for(r-=1;r-l>=Lowbit(r);r-=Lowbit(r))
    27. {
    28. ans=MAX(ans,idx[r]);
    29. }
    30. }
    31. return ans;
    32. }
    33. /*约定以 num[] 表示原数组, 以 idx[] 表示索引数组, Lowbit(x)=x&(-x)
    34. 树状数组求和时通过构造数组 idx[] 使 idx[k]=sum(num[tk]), tk [k-Lowbit(k)+1,k], 使用同样的方法构造最值索引数组:
    35. 以最大值为例, 先讨论询问过程中不对数组做任何修改的情况, 用 idx[k] 记录 [k-Lowbit(k)+1,k] 区间内的最大值 */
    36. void Modify(int id,int grade,int n)
    37. {
    38. num[id] = grade;
    39. for(int i = id;i<=n;i+=Lowbit(i)){
    40. idx[i] = grade;
    41. for(int j=1;j<Lowbit(i);j<<=1){
    42. idx[i]=MAX(idx[i],idx[i-j]);
    43. }
    44. }
    45. }
    46. int main()
    47. {
    48. int n,m;
    49. while( scanf("%d %d", &n, &m)!=EOF )
    50. {
    51. memset(idx, 0, sizeof(idx) );
    52. memset(num, 0, sizeof(num) );
    53. for(int i=1; i<=n; i++) //i 为 id 即第几个人
    54. {
    55. scanf("%d", &num[i]);
    56. Modify(i, num[i], n); //一定要从1开始建立, 参数需建立数组, 为了改变idx
    57. }
    58. while(m--)
    59. {
    60. char str[3];
    61. int light, right;
    62. scanf("%s%d%d",str, &light, &right);
    63. if( str[0] == 'Q' )
    64. printf("%d ", Query(light, right) );
    65. else
    66. Modify(light, right, n); //这里代表更换的id的grade
    67. }
    68. }
    69. return 0;
    70. }
    71. /*
    72. 本题目包含多组测试,请处理到文件结束。
    73. 在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。
    74. 学生ID编号分别从1编到N。
    75. 第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
    76. 接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。
    77. 当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
    78. 当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
    79. Output
    80. 对于每一次询问操作,在一行里面输出最高成绩。
    81. Sample Input
    82. 5 6
    83. 1 2 3 4 5
    84. Q 1 5
    85. U 3 6
    86. Q 3 4
    87. Q 4 5
    88. U 2 9
    89. Q 1 5
    90. Sample Output
    91. 5
    92. 6
    93. 5
    94. 9
    95. */





    附件列表

    • 相关阅读:
      第二章 万变不离其踪--收割自己的深度图
      2.1 光照系统
      2.2 深度渲染机制
      2.3 来点实际--日照分析实现
      2.4 通视分析
      2.5 Cesium视域分析的实现
      2.6
      第三章 讲真,没几个搞得清楚的经纬度——GIS坐标
      3.1 地理坐标系统
      3.2 渲染坐标系统
    • 原文地址:https://www.cnblogs.com/sober-reflection/p/5768329edff7c592e9a026b8a87df4a6.html
    Copyright © 2020-2023  润新知