• Poj1564--Sum It Up(Dfs+去重)


    Sum It Up
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 6705   Accepted: 3491

    Description

    Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

    Input

    The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

    Output

    For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

    Sample Input

    4 6 4 3 2 2 1 1
    5 3 2 1 1
    400 12 50 50 50 50 50 50 25 25 25 25 25 25
    0 0

    Sample Output

    Sums of 4:
    4
    3+1
    2+2
    2+1+1
    Sums of 5:
    NONE
    Sums of 400:
    50+50+50+50+50+50+25+25+25+25
    50+50+50+50+50+25+25+25+25+25+25
    

    Source

    这题读完后感觉和组合数比较像, 写了一遍不对, 得去重。
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #include <algorithm>
     5 using namespace std;
     6 int n, m, ans, dis[15], num[15], vis[15];
     7 bool cmp(int a,int b)
     8 {
     9     return a > b; 
    10 }
    11 void Dfs(int a, int sum, int c)
    12 {
    13     if(sum == n)
    14     {
    15         for(int i = 0; i < c; i++)
    16         {
    17             if(i > 0)
    18                 printf("+%d", dis[i]);
    19             else
    20                 printf("%d", dis[i]);
    21         }
    22         ans++;
    23         printf("
    ");
    24     }
    25     for(int i = a; i < m; i++)
    26     {
    27         if(vis[i])
    28             continue;
    29         vis[i] = 1;
    30         dis[c] = num[i];
    31         Dfs(i+1, sum+num[i], c+1);
    32         vis[i] = 0;
    33         while(i+1 < m && num[i] == num[i+1])  //去重。 
    34             i++; 
    35     }
    36 }
    37 int main()
    38 {
    39     while(~scanf("%d %d", &n, &m), n)
    40     {
    41         memset(vis, 0, sizeof(vis));
    42         for(int i = 0; i < m; i++)
    43             scanf("%d", &num[i]);
    44         sort(num, num+m, cmp);
    45         ans = 0; 
    46         printf("Sums of %d:
    ", n);
    47         Dfs(0, 0, 0);
    48         if(!ans)
    49             printf("NONE
    ");
    50     }
    51     return 0;    
    52 } 

    //呵呵, 我并不是个弱者。

     
  • 相关阅读:
    Javascript中对文字编码的三个函数
    Web.config文件中关于Cookie安全性的考量和设置
    面试时被问到的问题
    JQuery中查找父元素,子元素,追加元素,插入元素和删除元素 及其他常用方法
    JQuery插件开发学习
    Umbraco image中使用Crop URL
    SQL中的row_number() over()解释
    GEO,IGSO,MEO,LEO
    计算机网络端口常识
    VMnet1和VMnet8 未识别的网络的解决方法
  • 原文地址:https://www.cnblogs.com/soTired/p/4738656.html
Copyright © 2020-2023  润新知