• Escape from the Hell


    Escape from the Hell

    [JAG Asia 2016]

    容易证明优先选择差值大的更优

    对于最后一瓶我们可以枚举

    枚举最后一瓶,然后在树状数组上消去它的影响,然后线段树check是否出现被追上的情况,即查询区间最小值。

    需要用到两个线段树,因为当二分找到的位置在最后一瓶后面,需要在线段树上消去最后一瓶的影响。

    特别注意当差值为负数的时候前缀和就没有单调性了,所以二分要在单调递增区间二分。

    #include <bits/stdc++.h>
     
    #define ll long long
    using namespace std;
    const int maxn = 1e5 + 7;
    const ll inf = 0x3f3f3f3f3f3f3f3f;
    int n;
    int C[maxn];
    struct node {
        int a, b;
    } s[maxn];
     
    bool cmp(node x, node y) {
        return x.a - x.b > y.a - y.b;
    }
     
    ll c[maxn];
    ll sum[maxn];
    struct tree {
        int l, r;
        ll min1, min2;
    } t[maxn << 2];
     
    int lowbit(int x) {
        return x & (-x);
    }
     
    ll getsum(int i) {
        ll res = 0;
        while (i > 0) {
            res += c[i];
            i -= lowbit(i);
        }
        return res;
    }
     
    void update(int i, ll val) {
        while (i < maxn) {
            c[i] += val;
            i += lowbit(i);
        }
    }
     
    void build(int p, int l, int r) {
        t[p].l = l, t[p].r = r;
        if (l == r) {
            t[p].min1 = getsum(l) - sum[l];
            t[p].min2 = getsum(l) - sum[l - 1];
            return;
        }
        int mid = (l + r) >> 1;
        build(p << 1, l, mid);
        build(p << 1 | 1, mid + 1, r);
        t[p].min1 = min(t[p << 1].min1, t[p << 1 | 1].min1);
        t[p].min2 = min(t[p << 1].min2, t[p << 1 | 1].min2);
    }
     
    ll ask1(int p, int l, int r) {
        if (l <= t[p].l && r >= t[p].r) return t[p].min1;
        int mid = (t[p].l + t[p].r) >> 1;
        ll val = inf;
        if (l <= mid) val = min(val, ask1(p << 1, l, r));
        if (r > mid) val = min(val, ask1(p << 1 | 1, l, r));
        return val;
    }
     
    ll ask2(int p, int l, int r) {
        if (l <= t[p].l && r >= t[p].r) return t[p].min2;
        int mid = (t[p].l + t[p].r) >> 1;
        ll val = inf;
        if (l <= mid) val = min(val, ask2(p << 1, l, r));
        if (r > mid) val = min(val, ask2(p << 1 | 1, l, r));
        return val;
    }
     
    int erfen(int z, int y, ll x) {
        int l = z, r = y;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (getsum(mid) >= x)r = mid;
            else l = mid + 1;
        }
        return l;
    }
     
    void dubug() {
        for (int i = 1; i <= n; ++i) {
            cout << ask1(1, i, i) << "    " << ask2(1, i, i) << endl;
        }
    }
     
    int main() {
        ll L;
        scanf("%d%lld", &n, &L);
        for (int i = 1; i <= n; ++i) {
            scanf("%d%d", &s[i].a, &s[i].b);
        }
        sort(s + 1, s + 1 + n, cmp);
        int k=-1;
        for (int i = 1; i <= n; ++i) {
            if(s[i].a-s[i].b>=0) update(i, s[i].a - s[i].b);
            else if(k==-1){
                k=i-1;
            }
            scanf("%d", &C[i]);
            sum[i] = sum[i - 1] + C[i];
        }
        if(k==-1) k=n;
        build(1, 1, n);
        int minn = n + 1;
        for (int i = 1; i <= n; ++i) {
            if(s[i].a-s[i].b>0) update(i, s[i].b - s[i].a);
            int pp = erfen(1, k + 1, L - s[i].a);
            if (pp != k + 1) {
                if (pp < i) {
                    if (ask1(1, 1, pp) > 0) {
                        minn = min(minn, pp + 1);
                    }
                } else {
                    if (i==1||ask1(1, 1, i - 1) > 0) {
                        if (pp==1||ask2(1, i + 1, pp) - (s[i].a - s[i].b) > 0) {
                            minn = min(minn, pp);
                        }
                    }
                }
            }
            if(s[i].a-s[i].b>0)
            update(i, s[i].a - s[i].b);
        }
        if (minn == n + 1) {
            printf("-1
    ");
        } else {
            printf("%d
    ", minn);
        }
        return 0;
    }
    
    不要忘记努力,不要辜负自己 欢迎指正 QQ:1468580561
  • 相关阅读:
    触发事件trigger
    淘宝天猫关键词SEO优化
    Linux下升级python
    python3多线程趣味详解
    python之selenium
    1kkk
    python之lxml(xpath)
    python中时间日期格式化符号
    唯品会数据采集-异步瀑布流
    python数据库操作pymysql
  • 原文地址:https://www.cnblogs.com/smallocean/p/11518434.html
Copyright © 2020-2023  润新知