题目描述:
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
例1:
输入: [3,2,3,null,3,null,1] 3 / 2 3 3 1 输出: 7 解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
例2:
输入: [3,4,5,1,3,null,1] 3 / 4 5 / 1 3 1 输出: 9 解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9. 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/house-robber-iii 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
方法一:暴力递归
为了便于理解,我将节点取名为:爷爷、父亲、孙子,如下图所示
首先来定义这个问题的状态 爷爷节点获取到最大的偷取的钱数呢?
- 首先要明确相邻的节点不能偷,也就是爷爷选择偷,儿子就不能偷了,但是孙子可以偷
- 二叉树只有左右两个孩子,一个爷爷最多 2 个儿子,4 个孙子
根据以上条件,我们可以得出单个节点的钱该怎么算4 个孙子偷的钱 + 爷爷的钱 VS 两个儿子偷的钱,哪个组合钱多,就当做当前节点能偷的最大钱数。这就是动态规划里面的最优子结构
(可能有缜密的人想到父亲节点(如上图中的2)➕孙子节点(如上图中的1)岂不是漏了?事实上是没有的,因为另外两个孙子偷钱的情况已经包含在另外一个儿子中了)
由于是二叉树,这里可以选择计算所有子节点
- 爷爷偷的钱加上4 个孙子偷的钱如下
int method1 = root.val + rob(root.left.left) + rob(root.left.right) + rob(root.right.left) + rob(root.right.right)
- 两个儿子偷的钱如下
int method2 = rob(root.left) + rob(root.right);
- 挑选一个钱数多的方案则
int result = Math.max(method1, method2);
//go /** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func rob(root *TreeNode) int { if root == nil { return 0 } money := root.Val // money:记录爷爷➕孙子偷的钱 if root.Left != nil { money += rob(root.Left.Left) + rob(root.Left.Right) } if root.Right != nil { money += rob(root.Right.Left) + rob(root.Right.Right) } // 返回结果为 Max(爷爷加孙子节点,父亲节点) return Max(money, rob(root.Left)+ rob(root.Right)) } func Max(x, y int) int { if x > y { return x } return y }
方法二:状压DP
为了不当被60%击败的人,我选择一往无前!
拿出终极杀器——状压DP(状态压缩动态规划)
我们换一种办法来定义此问题
每个节点可选择偷或者不偷两种状态,根据题目意思,相连节点不能一起偷
- 当前节点选择不偷时,两个孩子节点只需要拿最多的钱出来就行(两个孩子节点偷不偷没关系)
- 当前节点选择偷时,那么两个孩子节点就不能选择偷了
我们只使用一个大小为 2 的数组来表示 res := make([]int, 2)
0 代表不偷,1 代表偷
任何一个节点能偷到的最大钱的状态可以定义为
- 当前节点选择不偷:当前节点能偷到的最大钱数 = 左孩子能偷到的钱 + 右孩子能偷到的钱
- 当前节点选择偷:当前节点能偷到的最大钱数 = 当前节点的钱数 + 左孩子选择自己不偷时能得到的钱 + 右孩子选择不偷时能得到的钱
表示为公式如下
//当前节点选择不偷:当前节点能偷到的最大钱数 = 左孩子能偷到的钱 + 右孩子能偷到的钱 res[0] = Max(left[0],left[1]) + Max(right[0],right[1]) //当前节点选择偷:当前节点能偷到的最大钱数 = 当前节点的钱数 + 左孩子选择自己不偷时能得到的钱 + 右孩子选择不偷时能得到的钱 res[1] = root.Val + left+[0] + right[0]
//go func rob(root *TreeNode) int { res := robInternal(root) // 0表示当前节点不偷,1表示当前节点偷 return Max(res[0],res[1]) } func robInternal(root *TreeNode) []int { if root == nil { return []int{0, 0} } res := make([]int, 2) left := robInternal(root.Left) right := robInternal(root.Right) //当前节点选择不偷:当前节点能偷到的最大钱数 = 左孩子能偷到的钱 + 右孩子能偷到的钱 res[0] = Max(left[0],left[1]) + Max(right[0],right[1]) //当前节点选择偷:当前节点能偷到的最大钱数 = 当前节点的钱数 + 左孩子选择自己不偷时能得到的钱 + 右孩子选择不偷时能得到的钱 res[1] = root.Val + left+[0] + right[0] return res }