• OpenCV_轮廓的查找、表达、绘制、特性及匹配


    虽然Canny之类的边缘检测算法可以根据像素间的差异检测出轮廓边界的像素,但是它并没有将轮廓作为一个整体。下一步是要将这些边缘像素组装成轮廓。

    轮廓是构成任何一个形状的边界或外形线。直方图对比和模板匹配根据色彩及色彩的分布来进行匹配,以下包括:轮廓的查找、表达方式、组织方式、绘制、特性、匹配。

    首先回忆下几个结构体:

    首先是图像本身的结构体:
    typedef struct CvMat
    {
    int type; /* CvMat 标识 (CV_MAT_MAGIC_VAL), 元素类型和标记 */
    int step; /* 以字节为单位的行数据长度*/
    int* refcount; /* 数据引用计数 */
    union
    {
    uchar* ptr;
    short* s;
    int* i;
    float* fl;
    double* db;
    } data;
    union
    {
    int rows;
    int height;
    };
    union
    {
    int cols;
    int width;
    };
    这个结构体是最基础的矩阵,而图像本身就是一个复杂的矩阵,所以图像是对这个结构体的继承:
    typedef struct _IplImage
    {
    int nSize; /* IplImage大小 */
    int ID; /* 版本 (=0)*/
    int nChannels; /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
    int alphaChannel; /* 被OpenCV忽略 */
    int depth; /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
    IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */
    char colorModel[4]; /* 被OpenCV忽略 */
    char channelSeq[4]; /* 同上 */
    int dataOrder; /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道.
    cvCreateImage只能创建交叉存取图像 */
    int origin; /* 0 - 顶—左结构,1 - 底—左结构 (Windows bitmaps 风格) */
    int align; /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */
    int width; /* 图像宽像素数 */
    int height; /* 图像高像素数*/
    struct _IplROI *roi;/* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
    struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
    void *imageId; /* 同上*/
    struct _IplTileInfo *tileInfo; /*同上*/
    int imageSize; /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
    char *imageData; /* 指向排列的图像数据 */
    int widthStep; /* 排列的图像行大小,以字节为单位 */
    int BorderMode[4]; /* 边际结束模式, 被OpenCV忽略 */
    int BorderConst[4]; /* 同上 */
    char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
    }IplImage;
    值得注意的地方:首先是origin这个,当有些图像复制或者视频播放时候,由于原点坐标位置未定,很容造成图片倒置。这时就得用void cvFlip( const CvArr* src, CvArr* dst=NULL, int flip_mode=0)函数或者直接设定origin来改变坐标原点;widthstep就是CvMat的step;
    构造方法:IplImage* cvCreateImage( CvSize size, int depth, int channels );
    直方图结构:
    typedef struct CvHistogram
    {
    int type;
    CvArr* bins;
    float thresh[CV_MAX_DIM][2]; /* 对于标准直方图,bins的值有左边界+右边界=2 */
    float** thresh2; /* 对于非标准直方图 */
    CvMatND mat; /* embedded matrix header for array histograms */
    }CvHistogram;

    因此,由于直方图的复杂性,得到一个图片的直方图的步骤就不是一个函数完成的:
    1,分割图片通道
    2,求出bins数量及范围
    3,CvHistogram* cvCreateHist( int dims, int* sizes, int type,float** ranges=NULL, int uniform=1 );
    创建直方图
    4,void cvCalcHist( IplImage** image, CvHistogram* hist,int accumulate=0, const CvArr* mask=NULL );
    计算直方图

    下面开始轮廓的学习。

    查找轮廓
        首先是如何在图像中找到轮廓,可以利用OpenCV提供的方法cvFindContours()可以很方便的查找轮廓。

    cvFindContours()方法从二值图像中寻找轮廓。因此此方法处理的图像可以是从cvCanny()函数得到的有边缘像素的图像,或者从cvThreshold()及cvAdaptiveThreshold()得到的图像,这时的边缘是正和负区域之间的边界。

    既然在查找之前,我们需要将彩色图像转换成灰度图像,然后再将灰度图像转换成二值图像。代码如下所示:

    1  CvSeq *contours = 0;
    2 cvCvtColor(src,dst,CV_BGR2GRAY);//将源图像进行灰度化
    3 cvThreshold(dst,dst,f_thresh,255,CV_THRESH_BINARY);//二值化阈值 虽然第一个参数是const,但仍可以更改dst
    4 cvFindContours(dst,f_storage,&contours); //查找轮廓
    5 cvZero(dst);

    轮廓的表达方式
        使用上面的代码可以得到图像的默认轮廓,但是轮廓在电脑中是如何表达的呢?在OpenCv中提供了两类表达轮廓的方式:顶点的序列、Freeman链码。

    首先介绍下内存存储器的概念,这是OpenCV在创建动态对象时存取内存的技术。

    CvMemStorage* cvCreateMemStorage( int block_size=0 );//创建默认值大小的内存空间
    void cvReleaseMemStorage( CvMemStorage** storage );//释放内存空间
    void cvClearMemStorage( CvMemStorage* storage );//清空内存块,可以用于重复使用,将内存返还给存储器,而不是返回给系统
    void *cvMemStorageAlloc(CvMemStorage *storage,size_t size);//开辟内存空间

    序列

    序列是内存存储器中可以存储的一种对象。序列是某种结构的链表。序列在内存中被实现为一个双端队列,因此序列可以实习快速的随机访问,以及快速删除顶端的元素,但是从中间删除元素则稍慢些。

    序列结构:
    CvSeq
    可动态增长元素序列(OpenCV_1.0已发生改变,详见cxtypes.h) Growable sequence of elements

    #define CV_SEQUENCE_FIELDS() /
    int flags; /* micsellaneous flags */ /
    int header_size; /* size of sequence header */ /
    struct CvSeq* h_prev; /* previous sequence */ /
    struct CvSeq* h_next; /* next sequence */ /
    struct CvSeq* v_prev; /* 2nd previous sequence */ /
    struct CvSeq* v_next; /* 2nd next sequence */ /
    int total; /* total number of elements */ /
    int elem_size;/* size of sequence element in bytes */ /
    char* block_max;/* maximal bound of the last block */ /
    char* ptr; /* current write pointer */ /
    int delta_elems; /* how many elements allocated when the sequence grows (sequence granularity) */ /
    CvMemStorage* storage; /* where the seq is stored */ /
    CvSeqBlock* free_blocks; /* free blocks list */ /
    CvSeqBlock* first; /* pointer to the first sequence block */
    typedef struct CvSeq
    {
    CV_SEQUENCE_FIELDS()
    } CvSeq;
    相关操作就不重复列出(排序,查找,逆序,拆分,复制,读取,写入切片的复制,移除,插入,),可以查找相关文档。

    1.顶点的序列
        用多个顶点(或各点间的线段)来表达轮廓。假设要表达一个从(0,0)到(2,2)的矩形,
    (1)如果用点来表示,那么依次存储的可能是:(0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,1);
    (2)如果用点间的线段来表达轮廓,那么依次存储的可能是:(0,0),(2,0),(2,2),(0,2)。
     2.Freeman链码
        Freeman链码需要一个起点,以及从起点出发的一系列位移。每个位移有8个方向,从0~7分别指向从正北开始的8个方向。假设要用Freeman链码表达从(0,0)到(2,2)的矩形,可能的表示方法是:起点(0,0),方向链2,2,4,4,6,6,0,0。
    轮廓之间的组织方式
        在查找到轮廓之后,不同轮廓是怎么组织的呢?根据不同的选择,它们可能是:(1)列表;(2)双层结构;(3)树型结构。
        从纵向上来看,列表只有一层,双层结构有一或者两层,树型结构可能有一层或者多层。
        如果要遍历所有的轮廓,可以使用递归的方式。

    轮廓的绘制
        轮廓的绘制比较简单,用上面提到的方法取得轮廓的所有点,然后把这些点连接成一个多边形即可。

    轮廓的一个例子为:OpenCV_轮廓例子

    上例中检测出输入图像的轮廓,然后逐个绘制每个轮廓。下个例子为:

    在输入图像上寻找并绘制轮廓

    具体代码为:

    轮廓例子
     1 #include "stdafx.h"
    2 #include <iostream>
    3 using namespace std;
    4
    5
    6 #ifdef _CH_
    7 #pragma package <opencv>
    8 #endif
    9
    10 #include "cv.h"
    11 #include "highgui.h"
    12
    13 using namespace std;
    14
    15 int _tmain(int argc, _TCHAR* argv[])
    16 {
    17 cvNamedWindow("flower",1);
    18
    19 IplImage* img_8uc1 = cvLoadImage("flower.jpg",CV_LOAD_IMAGE_GRAYSCALE);
    20 IplImage* img_edge = cvCreateImage(cvGetSize(img_8uc1),8,1);
    21 IplImage* img_8uc3 = cvCreateImage(cvGetSize(img_8uc1),8,3);
    22
    23 cvThreshold(img_8uc1,img_edge,128,255,CV_THRESH_BINARY);
    24
    25 CvMemStorage* storage = cvCreateMemStorage();
    26 CvSeq* first_contour = NULL;
    27
    28 int Nc = cvFindContours(
    29 img_edge,
    30 storage,
    31 &first_contour,
    32 sizeof(CvContour),
    33 CV_RETR_LIST
    34 );
    35
    36 int n=0;
    37 printf("Total contours detected %d \n",Nc);
    38
    39 for (CvSeq* c=first_contour;c!=NULL;c=c->h_next)
    40 {
    41 cvCvtColor(img_8uc1,img_8uc3,CV_GRAY2BGR);
    42
    43 cvDrawContours(
    44 img_8uc3,
    45 c,
    46 CV_RGB(0,0,255),
    47 CV_RGB(0,255,0),
    48 0,
    49 2,
    50 8
    51 );
    52
    53 printf("Contour # %d\n",n);
    54 cvShowImage("flower",img_8uc3);
    55 printf("%d elements:\n",c->total);
    56
    57 for (int i=0;i<c->total;++i)
    58 {
    59 CvPoint* p = CV_GET_SEQ_ELEM(CvPoint,c,i);
    60 printf("(%d,%d)\n",p->x,p->y);
    61 }
    62 cvWaitKey(0);
    63 n++;
    64 }
    65
    66 printf("Finished all contours.\n");
    67
    68 cvCvtColor(img_8uc1,img_8uc3,CV_GRAY2BGR);
    69 cvShowImage("flower",img_8uc3);
    70
    71 cvWaitKey(0);
    72
    73 cvDestroyWindow("flower");
    74 cvReleaseImage(&img_8uc3);
    75 cvReleaseImage(&img_8uc1);
    76 cvReleaseImage(&img_edge);
    77 return 0;
    78 }

    轮廓的特性
        轮廓的特性有很多,下面一一介绍。

    1.轮廓的多边形逼近
        轮廓的多边形逼近指的是:使用多边形来近似表示一个轮廓。
        多边形逼近的目的是为了减少轮廓的顶点数目。
        多边形逼近的结果依然是一个轮廓,只是这个轮廓相对要粗旷一些。
       可以使用方法cvApproxPoly()

    2.轮廓的关键点
        轮廓的关键点是:轮廓上包含曲线信息比较多的点。关键点是轮廓顶点的子集。
        可以使用cvFindDominantPoints函数来获取轮廓上的关键点,该函数返回的结果一个包含 关键点在轮廓顶点中索引 的序列。再次强调:是索引,不是具体的点。如果要得到关键点的具体坐标,可以用索引到轮廓上去找。
    3.轮廓的周长和面积
        轮廓的周长可以用cvContourPerimeter或者cvArcLength函数来获取。
        轮廓的面积可以用cvContourArea函数来获取。

    4.轮廓的边界框
        有三种常见的边界框:矩形、圆形、椭圆。
        (1)矩形:在图像处理系统中提供了一种叫Rectangle的矩形,不过它只能表达边垂直或水平的特例;OpenCv中还有一种叫Box的矩形,它跟数学上的矩形一致,只要4个角是直角即可。
        如果要获取轮廓的Rectangle,可以使用cvBoundingRect函数。
        如果要获取轮廓的Box,可以使用cvMinAreaRect2函数。
        (2)圆形
        如果要获取轮廓的圆形边界框,可以使用cvMinEnclosingCircle函数。
        (3)椭圆
        如果要获取轮廓的椭圆边界框,可以使用cvFitEllipse2函数。
    5.轮廓的矩

        矩是通过对轮廓上所有点进行积分运算(或者认为是求和运算)而得到的一个粗略特征。

    在连续情况下,图像函数为 f(x,y),那么图像的p+q阶几何矩(标准矩)定义为:

    p ,q = 0,1,2…… 

    p+q阶中心距定义为:

     p,q = 0,1,2……

    其中代表图像的重心,

    ,

    对于离散的数字图像,采用求和号代替积分:

    ,,p,q = 0,1,2 ……

    N和M分别是图像的高度和宽度;

    归一化的中心距定义为:;其中

    在公式中,p对应x维度上的矩,q对应y维度上的矩,阶数表示对应的部分的指数。该计算是对轮廓界上所有像素(数目为n)进行求和。如果p和q全部为0,那么m00实际上对应轮廓边界上点的数目。

    虽然可以直接计算出轮廓的矩,但是经常会用到归一化的矩(因此不同大小但是形状相同的物体会有相同的值)。同样,简单的矩依赖于所选坐标系,这意味着物体旋转后就无法正确匹配。

    于是就产生了Hu矩以及其他归一化矩的函数。

    Hu矩是归一化中心矩的线性组合。之所以这样做是为了能够获取代表图像某个特征的矩函数。这些矩函数对缩放,旋转和镜像映射出了(h1)具有不变性。

    Hu矩是从中心矩中计算得到。即七个由归一化中心矩组合成的矩:  

     其中中心矩和归一化中心矩的定义为:

     

     

       我们可以使用cvContoursMoments函数、cvMoments函数方便的得到轮廓的矩集,然后再相应的方法或函数获取各种矩。
        特定的矩:cvGetSpatialMoment函数
        中心矩:cvGetCentralMoment函数
        归一化中心矩:cvGetNormalizedCentralMoment函数
        Hu矩:cvGetHuMoments函数
    6.轮廓的轮廓树
        轮廓树用来描述某个特定轮廓的内部特征。注意:轮廓树跟轮廓是一一对应的关系;轮廓树不用于描述多个轮廓之间的层次关系。

        轮廓树的创建过程:

        从一个轮廓创建一个轮廓树是从底端(叶子节点)到顶端(根节点)的。首先搜索三角形突出或者凹陷的形状的周边(轮廓上的每一个点都不是完全和它的相邻点共线的)每个这样的三角形被一条线段代替,这条线段通过连接非相邻点的两点得到;因此实际上三角形或者被削平或者被填满。每个这样的替换都把轮廓的顶点减少,并且给轮廓树创建一个新节点。如果这样的一个三角形的两侧有原始边,那么她就是得到的轮廓树的叶子;如果一侧已是一个三角形,那么它就是那个三角形的父节点。这个过程的迭代最终把物体的外形简称一个四边形,这个四边形也被剖开;得到的两个三角形是根节点的两个子节点。

    结果的二分树最终将原始轮廓的形状性比编码。每个节点被它所对应的三角形的信息所注释。

    这样建立的轮廓树并不太鲁棒,因为轮廓上小的改变也可能会彻底改变结果的树,同时最初的三角形是任意选取的。为了得到较好的描述需要首先使用函数cvApproxPoly()之后将轮廓排列(运用循环移动)成最初的三角形不怎么收到旋转影响的状态。
        可以用函数cvCreateContourTree来构造轮廓树。

     7.轮廓的凸包和凸缺陷
        轮廓的凸包和凸缺陷用于描述物体的外形。凸包和凸缺陷很容易获得,不过我目前不知道它们到底怎么使用。
        如果要判断轮廓是否是凸的,可以用cvCheckContourConvexity函数。
        如果要获取轮廓的凸包,可以用cvConvexHull2函数,返回的是包含顶点的序列。
        如果要获取轮廓的凸缺陷,可以用cvConvexityDefects函数。
     8.轮廓的成对几何直方图
        成对几何直方图(pairwise geometrical histogram PGH)是链码编码直方图(chain code histogram CCH)的一个扩展或者延伸。CCH是一种直方图,用来统计一个轮廓的Freeman链码编码每一种走法的数字。这种直方图的一个优良性质为当物体旋转45度,那么新直方图是老直方图的循环平移。这样就可以不受旋转影响。

        (1)轮廓保存的是一系列的顶点,轮廓是由一系列线段组成的多边形。对于看起来光滑的轮廓(例如圆),只是线段条数比较多,线段长度比较短而已。实际上,电脑中显示的任何曲线都由线段组成。
        (2)每两条线段之间都有一定的关系,包括它们(或者它们的延长线)之间的夹角,两条线段的夹角范围是:(0,180)。
        (3)每两条线段上的点之间还有距离关系,包括最短(小)距离、最远(大)距离,以及平均距离。最大距离我用了一个偷懒的计算方法,我把轮廓外界矩形的对角线长度看作了最大距离。
        (4)成对几何直方图所用的统计数据包括了夹角和距离。

    轮廓的匹配
        如果要比较两个物体,可供选择的特征很多。如果要判断某个人的性别,可以根据他(她)头发的长短来判断,这很直观,在长发男稀有的年代准确率也很高。也可以根据这个人尿尿的射程来判断,如果射程大于0.50米,则是男性。总之,方法很多,不一而足。
        我们在上文中得到了轮廓的这么多特征,它们也可以用于进行匹配。典型的轮廓匹配方法有:Hu矩匹配、轮廓树匹配、成对几何直方图匹配。
    1.Hu矩匹配
        轮廓的Hu矩对包括缩放、旋转和镜像映射在内的变化具有不变性。cvMatchShapes函数可以很方便的实现对2个轮廓间的匹配。
    2.轮廓树匹配
        用树的形式比较两个轮廓。cvMatchContourTrees函数实现了轮廓树的对比。
    3.成对几何直方图匹配
        在得到轮廓的成对几何直方图之后,可以使用直方图对比的方法来进行匹配。

    轮廓匹配源码1
    /************************Hu矩匹配********************************************/    
    // IplImage* img_8uc1 = cvLoadImage("flower.jpg",CV_LOAD_IMAGE_GRAYSCALE);
    // IplImage* img_edge1 = cvCreateImage(cvGetSize(img_8uc1),8,1);
    //// IplImage* img_8uc3 = cvCreateImage(cvGetSize(img_8uc1),8,3);
    //
    // cvThreshold(img_8uc1,img_edge1,128,255,CV_THRESH_BINARY);
    //
    //
    // CvMemStorage* storage1 = cvCreateMemStorage();
    // CvSeq* first_contour1 = NULL;
    //
    // int Nc = cvFindContours(
    // img_edge1,
    // storage1,
    // &first_contour1,
    // sizeof(CvContour),
    // CV_RETR_LIST
    // );
    //
    // IplImage* img_8uc12 = cvLoadImage("flower1.jpg",CV_LOAD_IMAGE_GRAYSCALE);
    // IplImage* img_edge12 = cvCreateImage(cvGetSize(img_8uc12),8,1);
    //// IplImage* img_8uc3 = cvCreateImage(cvGetSize(img_8uc1),8,3);
    //
    // cvThreshold(img_8uc12,img_edge12,128,255,CV_THRESH_BINARY);
    //
    //
    // CvMemStorage* storage2 = cvCreateMemStorage();
    // CvSeq* first_contour2 = NULL;
    //
    // int Nc2 = cvFindContours(
    // img_edge12,
    // storage2,
    // &first_contour2,
    // sizeof(CvContour),
    // CV_RETR_LIST
    // );
    //
    // double n = cvMatchShapes(first_contour1,first_contour2,CV_CONTOURS_MATCH_I1,0);
    //
    // printf("%d",n);
    //
    // cvWaitKey();

    /***************************轮廓树匹配***********************************************/
    // IplImage* img_8uc1 = cvLoadImage("flower.jpg",CV_LOAD_IMAGE_GRAYSCALE);
    // IplImage* img_edge1 = cvCreateImage(cvGetSize(img_8uc1),8,1);
    //// IplImage* img_8uc3 = cvCreateImage(cvGetSize(img_8uc1),8,3);
    //
    // cvThreshold(img_8uc1,img_edge1,128,255,CV_THRESH_BINARY);
    //
    //
    // CvMemStorage* storage1 = cvCreateMemStorage();
    // CvSeq* first_contour1 = NULL;
    //
    // int Nc = cvFindContours(
    // img_edge1,
    // storage1,
    // &first_contour1,
    // sizeof(CvContour),
    // CV_RETR_LIST
    // );

    // CvContourTree* tree1 = cvCreateContourTree(
    // first_contour1,
    // storage1,
    // 200
    // );
    //
    // IplImage* img_8uc12 = cvLoadImage("flower1.jpg",CV_LOAD_IMAGE_GRAYSCALE);
    // IplImage* img_edge12 = cvCreateImage(cvGetSize(img_8uc12),8,1);
    //// IplImage* img_8uc3 = cvCreateImage(cvGetSize(img_8uc1),8,3);
    //
    // cvThreshold(img_8uc12,img_edge12,128,255,CV_THRESH_BINARY);
    //
    //
    // CvMemStorage* storage2 = cvCreateMemStorage();
    // CvSeq* first_contour2 = NULL;
    //
    // int Nc2 = cvFindContours(
    // img_edge12,
    // storage2,
    // &first_contour2,
    // sizeof(CvContour),
    // CV_RETR_LIST
    // );
    // CvContourTree* tree2 = cvCreateContourTree(
    // first_contour2,
    // storage2,
    // 200
    // );
    // double n = cvMatchContourTrees(tree1,tree1,CV_CONTOURS_MATCH_I1,200);
    //
    // printf("%d",n);
    //
    // cvWaitKey();

    下面为成对几何直方图匹配方法

    轮廓的匹配源码
    #include "gesrec.h"
    #include <stdio.h>//////////////////////////////////////////

    #define PI 3.14159f

    //轮廓面积比较函数
    static int gesContourCompFunc(const void* _a, const void* _b, void* userdata)
    {
    int retval;
    double s1, s2;
    CvContour* a = (CvContour*)_a;
    CvContour* b = (CvContour*)_b;

    s1 = fabs(cvContourArea(a));
    s2 = fabs(cvContourArea(b));
    //s1 = a->rect.height * a->rect.width;
    //s2 = b->rect.height * b->rect.width;

    if(s1 < s2)
    {
    retval = 1;
    }
    else if(s1 == s2)
    {
    retval = 0;
    }
    else
    {
    retval = -1;
    }

    return retval;
    }

    //src:BGR dst:
    void gesFindContours(IplImage* src, IplImage* dst, CvSeq** templateContour, CvMemStorage* templateStorage, int flag)
    {
    int count;//轮廓数
    IplImage* gray;
    CvMemStorage* first_sto;
    CvMemStorage* all_sto;
    CvSeq* first_cont;
    CvSeq* all_cont;
    CvSeq* cur_cont;

    //初始化动态内存
    first_sto = cvCreateMemStorage(0);
    first_cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), first_sto);
    all_sto = cvCreateMemStorage(0);
    all_cont = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvSeq), all_sto);

    //创建源图像对应的灰度图像
    gray = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
    cvCvtColor(src, gray, CV_BGR2GRAY);

    //得到图像的外层轮廓
    count = cvFindContours(gray, first_sto, &first_cont, sizeof(CvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

    //如果没有检测到轮廓则返回
    if(first_sto == NULL)
    {
    return;
    }

    //将所有的轮廓都放到first_cont中
    for(;first_cont != 0;first_cont = first_cont->h_next)
    {
    if(((CvContour* )first_cont)->rect.height * ((CvContour* )first_cont)->rect.width >= 625)
    cvSeqPush(all_cont, first_cont);
    }

    //对轮廓按照面积进行排序
    cvSeqSort(all_cont, gesContourCompFunc, 0);

    //在dst中画出轮廓
    cvZero(dst);
    for(int i = 0;i < min(all_cont->total, 3);i++)///////////////////////次数待改
    {
    cur_cont = (CvSeq* )cvGetSeqElem(all_cont, i);
    if(flag != 0 && i == 0)
    {
    *templateContour = cvCloneSeq(cur_cont, templateStorage);
    }

    CvScalar color = CV_RGB(rand()&255, rand()&255, rand()&255);
    cvDrawContours(dst, (CvSeq* )cur_cont, color, color, -1, 1, 8);
    }

    //判断原点位置以确定是否需要反转图像
    if(src->origin == 1)
    {
    cvFlip(dst);
    }

    //释放内存
    cvReleaseMemStorage(&first_sto);
    cvReleaseMemStorage(&all_sto);
    cvReleaseImage(&gray);
    }

    void gesMatchContoursTemplate(IplImage* src, IplImage* dst, CvSeq** templateContour)
    {
    CvSeq* contour;
    CvMemStorage* storage;

    //初始化动态内存
    storage = cvCreateMemStorage(0);
    contour = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), storage);

    //得到轮廓并进行匹配
    gesFindContours(src, dst, &contour, storage, 1);
    if(contour->total != 0)//如果得到的轮廓不为空
    {
    double result = cvMatchShapes((CvContour* )contour, (CvContour* )(*templateContour), CV_CONTOURS_MATCH_I3);
    printf("%.2f\n", result);/////////////////////////////////////////////
    }

    //释放内存
    cvReleaseMemStorage(&storage);
    }

    //模版匹配法的完整实现
    int gesMatchContoursTemplate2(IplImage* src, IplImage* dst, CvSeq* templateContour)
    {
    CvSeq* contour;
    CvSeq* cur_cont;
    CvMemStorage* storage;
    double minValue, tempValue;
    int i, minIndex;

    //初始化动态内存
    storage = cvCreateMemStorage(0);
    contour = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), storage);

    //得到轮廓并进行匹配
    minIndex = -1;
    gesFindContours(src, dst, &contour, storage, 1);
    if(contour->total != 0)//如果得到的轮廓不为空
    {
    if(templateContour->total != 0)
    {
    cur_cont = (CvSeq* )cvGetSeqElem(templateContour, 0);
    minValue = cvMatchShapes((CvContour* )contour, (CvContour* )cur_cont, CV_CONTOURS_MATCH_I3);
    minIndex = 0;
    printf("0:%.2f\n", minValue);
    }

    for(i = 1;i < templateContour->total;i++)
    {
    cur_cont = (CvSeq* )cvGetSeqElem(templateContour, i);
    tempValue = cvMatchShapes((CvContour* )contour, (CvContour* )cur_cont, CV_CONTOURS_MATCH_I3);
    if(tempValue < minValue)
    {
    minValue = tempValue;
    minIndex = i;
    }
    printf("%d:%.2f\n", i, tempValue);
    }

    if(minValue >= 0.3)
    {
    minIndex = -1;
    }
    }

    //打印匹配结果
    printf("the result is %d\n", minIndex);

    //释放内存
    cvReleaseMemStorage(&storage);

    return minIndex;
    }

    //找出轮廓最大的5个极大值点
    void gesFindContourMaxs(CvSeq* contour)
    {
    int i;
    CvScalar center;//重心位置
    CvPoint* p;
    CvMat max;//存储5个极大值的数组
    double initMax[] = {-1, -1, -1, -1, -1};//初始极大值设置为-1
    double minValue, maxValue;//5个极大值中的最大值与最小值
    CvPoint minLoc;//最小值的位置
    double preDistance = 0;
    bool isCandidate = false;//是否是候选的极大值点

    //初始化重心位置
    center = cvScalarAll(0);

    //初始化极大值矩阵
    max = cvMat(1, 5, CV_64FC1, initMax);

    //首先求出轮廓的重心
    for(i = 0;i < contour->total;i++)
    {
    p = (CvPoint* )cvGetSeqElem(contour, i);
    center.val[0] += p->x;
    center.val[1] += p->y;
    }
    center.val[0] /= contour->total;
    center.val[1] /= contour->total;

    //遍历轮廓,找出所有的极大值点
    for(i = 0;i < contour->total;i++)
    {
    p = (CvPoint* )cvGetSeqElem(contour, i);
    double distance = sqrt(pow(center.val[0] - p->x, 2) + pow(center.val[1] - p->y, 2));

    if(distance > preDistance)
    {
    isCandidate = true;
    }
    else if(distance < preDistance && isCandidate == true)
    {
    cvMinMaxLoc(&max, &minValue, &maxValue, &minLoc);

    if(distance > minValue)
    {
    cvmSet(&max, minLoc.y, minLoc.x, distance);
    }
    isCandidate = false;
    }
    else
    {
    isCandidate = false;
    }

    preDistance = distance;
    }

    //打印5个极大值
    printf("%.2f %.2f %.2f %.2f %.2f\n", cvmGet(&max, 0, 0), cvmGet(&max, 0, 1), cvmGet(&max, 0, 2), cvmGet(&max, 0, 3), cvmGet(&max, 0, 4));
    }

    //计算轮廓的pair-wise几何直方图
    CvHistogram* gesCalcContoursPGH(CvSeq* contour)
    {
    CvHistogram* hist;//成对几何直方图
    CvContour* tempCont;

    //得到成对几何直方图第二个维度上的范围
    tempCont = (CvContour* )contour;
    cvBoundingRect(tempCont, 1);

    int sizes[2] = {60, 200};
    float ranges[2][2] = {{0,PI}, {0,200}};
    float** rangesPtr = new float* [2];
    rangesPtr[0] = ranges[0];
    rangesPtr[1] = ranges[1];

    //初始化几何直方图
    hist = cvCreateHist(2, sizes, CV_HIST_ARRAY, rangesPtr, 1);

    //计算轮廓的成对几何直方图
    cvCalcPGH(contour, hist);

    return hist;
    }

    //对轮廓的pair-wise几何直方图进行匹配
    void gesMatchContoursPGH(CvSeq* contour, CvHistogram* templateHist)
    {
    CvHistogram* hist;

    //得到轮廓的成对几何直方图
    hist = gesCalcContoursPGH(contour);

    //归一化直方图
    cvNormalizeHist(templateHist, 1);
    cvNormalizeHist(hist, 1);

    //直方图匹配
    double result = cvCompareHist(hist, templateHist, CV_COMP_INTERSECT);
    printf("result:%.2f\n", result);

    //释放内存
    cvReleaseHist(&hist);
    }
  • 相关阅读:
    大话字符串逆序
    Class文件结构全面解析(上)
    怎么把CAT客户端的RootMessageId记录到每条日志中?
    阅读JDK源码后,我有了优化它的冲动!
    CAT客户端如何从Apollo中读取配置?
    Sublime Text 3许可证
    通俗易懂地给女朋友讲:线程池的内部原理
    五分钟后,你将学会在SpringBoot项目中如何集成CAT调用链
    分布式监控CAT服务端的本地部署
    如何优雅的设置线程池的大小?
  • 原文地址:https://www.cnblogs.com/slysky/p/2212227.html
Copyright © 2020-2023  润新知