题目:已知三点。求到三点距离同样的点。
分析:计算几何。分三类情况讨论:
1.三点共线,不成立。
2.多点重叠,有多组解。
3.是三角形,输出中点。
说明:注意绝对值小于0.05的按0计算;负数的四舍五入与正数不同,-0.05的%.1lf输出是 -0.0。
#include <stdio.h> #include <stdlib.h> #include <math.h> double dist( double x0, double y0, double x1, double y1 ) { return sqrt((x1-x0)*(x1-x0)+(y1-y0)*(y1-y0)); } double deal( double x ) { double esp = 1e-6; if ( x + esp < 0.05 && x - esp > -0.05 ) return 0.0; else if ( x < 0.0 ) return x - esp; else return x; } void calc( double x0, double y0, double x1, double y1, double x2, double y2 ) { double a = dist( x0, y0, x1, y1 ); double b = dist( x0, y0, x2, y2 ); double c = dist( x2, y2, x1, y1 ); if ( x0 == x1 && y1 == y0 || x0 == x2 && y2 == y0 || x2 == x1 && y1 == y2 ) { printf("There is an infinity of possible locations. "); return; } if ( fabs(a-b-c) < 1e-9 || fabs(b-a-c) < 1e-9 || fabs(c-a-b) < 1e-9 ) { printf("There is no possible location. "); return; } double A1 = x1-x0,B1 = y1-y0,C1 = x1*x1-x0*x0+y1*y1-y0*y0; double A2 = x2-x0,B2 = y2-y0,C2 = x2*x2-x0*x0+y2*y2-y0*y0; double X = (B1*C2-B2*C1)/(A1*B2-A2*B1)/-2.0; double Y = (A2*C1-A1*C2)/(A1*B2-A2*B1)/-2.0; printf("The equidistant location is (%.1lf, %.1lf). ",deal(X),deal(Y)); } int main() { int n; double x1,x2,x3,y1,y2,y3; while ( ~scanf("%d",&n) ) while ( n -- ) { scanf("%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3); calc( x1, y1, x2, y2, x3, y3 ); } return 0; }