• SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)


    Visible Lattice Points


    Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y.
     
    Input :
    The first line contains the number of test cases T. The next T lines contain an interger N
     
    Output :
    Output T lines, one corresponding to each test case.
     
    Sample Input :
    3
    1
    2
    5
     
    Sample Output :
    7
    19
    175
     
    Constraints :
    T <= 50
    1 <= N <= 1000000


    Added by: Varun Jalan
    Date: 2010-07-29
    Time limit: 1.368s
    Source limit: 50000B
    Memory limit: 1536MB
    Cluster: Cube (Intel Pentium G860 3GHz)
    Languages: All except: NODEJS objc PERL 6 VB.net
    Resource: own problem used for Indian ICPC training camp


    题目链接:http://www.spoj.com/problems/VLATTICE/en/


    题目大意:求在(0,0,0)到(n,n,n)这个立方体里从(0,0,0)能看到多少个点


    题目分析:(2,2,2)就看不到。由于被(1,1,1)挡住了。做过能量採集的都知道,就是求gcd(a, b, c) = 1的组数。当中1 <= a, b, c <= n,裸的莫比乌斯反演题,注意两点。三个数轴上还有三点(0, 0, 1)。(0 ,1, 0),(1, 0, 0),另外xoy面。yoz面,xoz面。三个面上另一些点,这些都要单独算,然后再加上立方体中不包含轴和面的点,分块求和优化10ms解决

    #include <cstdio>
    #include <algorithm>
    #define ll long long
    using namespace std;
    int const MAX = 1000005;
    int mob[MAX], p[MAX], sum[MAX];
    bool noprime[MAX];
    
    int Min(int a, int b, int c)
    {
        return min(a, min(b, c));
    }
    
    void Mobius()
    {
        int pnum = 0;
        mob[1] = 1;
        sum[1] = 1;
        for(int i = 2; i < MAX; i++)
        {
            if(!noprime[i])
            {
                p[pnum ++] = i;
                mob[i] = -1;
            }
            for(int j = 0; j < pnum && i * p[j] < MAX; j++)
            {
                noprime[i * p[j]] = true;
                if(i % p[j] == 0)
                {
                    mob[i * p[j]] = 0;
                    break;
                }
                mob[i * p[j]] = -mob[i];
            }
            sum[i] = sum[i - 1] + mob[i];
        }
    }
    
    ll cal(int l, int r)
    {
        if(l > r)
            swap(l, r);
        ll ans = 0;
        for(int i = 1, last = 0; i <= l; i = last + 1)
        {
            last = min(l / (l / i), r / (r / i));
            ans += (ll) (l / i) * (r / i) * (sum[last] - sum[i - 1]);
        }
        return ans;
    }
    
    ll cal(int l, int m, int r)
    {
        if(l > r)
            swap(l, r);
        if(l > m)
            swap(l, m);
        ll ans = 0;
        for(int i = 1, last = 0; i <= l; i = last + 1)
        {
            last = Min(l / (l / i), m / (m / i), r / (r / i));
            ans += (ll) (l / i) * (m / i) * (r / i) * (sum[last] - sum[i - 1]);
        }
        return ans;
    }
    
    int main()
    {
        Mobius();
        int T;
        scanf("%d", &T);
        while(T --)
        {
            int n;
            scanf("%d", &n);
            ll ans = 3;
            ans += (ll) cal(n, n, n);
            ans += (ll) cal(n ,n) * 3;
            printf("%lld
    ", ans);
        }
    }




  • 相关阅读:
    zabbix 二 zabbix agent 客户端
    zabbix (一:zabbix服务端)
    ssh ip "WARING:REMOTE HOST IDENTIFICATION HAS CHANGED!"
    undefined reference to libiconv_open'
    linux 远程 windows 命令:rdesktop vs windows mstsc
    源码安装mysql
    svn 结合rsync 的代码发布系统
    svn !
    使用rsync 的 --delete参数删除目标目录比源目录多余的文件
    svn 提交冲突(目录下删除文件)
  • 原文地址:https://www.cnblogs.com/slgkaifa/p/7191548.html
Copyright © 2020-2023  润新知