• 红黑树(三)之 Linux内核中红黑树的经典实现


    概要

    前面分别介绍了红黑树的理论知识 以及 通过C语言实现了红黑树。本章继续会红黑树进行介绍,下面将Linux 内核中的红黑树单独移植出来进行测试验证。若读者对红黑树的理论知识不熟悉,建立先学习红黑树的理论知识,再来学习本章。

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3624202.html


    更多内容:数据结构与算法系列 目录

    (01) 红黑树(一)之 原理和算法详细介绍
    (02) 红黑树(二)之 C语言的实现
    (03) 红黑树(三)之 Linux内核中红黑树的经典实现
    (04) 红黑树(四)之 C++的实现 
    (05) 红黑树(五)之 Java的实现
    (06) 红黑树(六)之 参考资料

    Linux内核中红黑树(完整源码)

    红黑树的实现文件(rbtree.h)

      1 /*
      2   Red Black Trees
      3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
      4   
      5   This program is free software; you can redistribute it and/or modify
      6   it under the terms of the GNU General Public License as published by
      7   the Free Software Foundation; either version 2 of the License, or
      8   (at your option) any later version.
      9 
     10   This program is distributed in the hope that it will be useful,
     11   but WITHOUT ANY WARRANTY; without even the implied warranty of
     12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     13   GNU General Public License for more details.
     14 
     15   You should have received a copy of the GNU General Public License
     16   along with this program; if not, write to the Free Software
     17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     18 
     19   linux/include/linux/rbtree.h
     20 
     21   To use rbtrees you'll have to implement your own insert and search cores.
     22   This will avoid us to use callbacks and to drop drammatically performances.
     23   I know it's not the cleaner way,  but in C (not in C++) to get
     24   performances and genericity...
     25 
     26   Some example of insert and search follows here. The search is a plain
     27   normal search over an ordered tree. The insert instead must be implemented
     28   in two steps: First, the code must insert the element in order as a red leaf
     29   in the tree, and then the support library function rb_insert_color() must
     30   be called. Such function will do the not trivial work to rebalance the
     31   rbtree, if necessary.
     32 
     33 -----------------------------------------------------------------------
     34 static inline struct page * rb_search_page_cache(struct inode * inode,
     35                          unsigned long offset)
     36 {
     37     struct rb_node * n = inode->i_rb_page_cache.rb_node;
     38     struct page * page;
     39 
     40     while (n)
     41     {
     42         page = rb_entry(n, struct page, rb_page_cache);
     43 
     44         if (offset < page->offset)
     45             n = n->rb_left;
     46         else if (offset > page->offset)
     47             n = n->rb_right;
     48         else
     49             return page;
     50     }
     51     return NULL;
     52 }
     53 
     54 static inline struct page * __rb_insert_page_cache(struct inode * inode,
     55                            unsigned long offset,
     56                            struct rb_node * node)
     57 {
     58     struct rb_node ** p = &inode->i_rb_page_cache.rb_node;
     59     struct rb_node * parent = NULL;
     60     struct page * page;
     61 
     62     while (*p)
     63     {
     64         parent = *p;
     65         page = rb_entry(parent, struct page, rb_page_cache);
     66 
     67         if (offset < page->offset)
     68             p = &(*p)->rb_left;
     69         else if (offset > page->offset)
     70             p = &(*p)->rb_right;
     71         else
     72             return page;
     73     }
     74 
     75     rb_link_node(node, parent, p);
     76 
     77     return NULL;
     78 }
     79 
     80 static inline struct page * rb_insert_page_cache(struct inode * inode,
     81                          unsigned long offset,
     82                          struct rb_node * node)
     83 {
     84     struct page * ret;
     85     if ((ret = __rb_insert_page_cache(inode, offset, node)))
     86         goto out;
     87     rb_insert_color(node, &inode->i_rb_page_cache);
     88  out:
     89     return ret;
     90 }
     91 -----------------------------------------------------------------------
     92 */
     93 
     94 #ifndef    _SLINUX_RBTREE_H
     95 #define    _SLINUX_RBTREE_H
     96 
     97 #include <stdio.h>
     98 //#include <linux/kernel.h>
     99 //#include <linux/stddef.h>
    100 
    101 struct rb_node
    102 {
    103     unsigned long  rb_parent_color;
    104 #define    RB_RED        0
    105 #define    RB_BLACK    1
    106     struct rb_node *rb_right;
    107     struct rb_node *rb_left;
    108 } /*  __attribute__((aligned(sizeof(long))))*/;
    109     /* The alignment might seem pointless, but allegedly CRIS needs it */
    110 
    111 struct rb_root
    112 {
    113     struct rb_node *rb_node;
    114 };
    115 
    116 
    117 #define rb_parent(r)   ((struct rb_node *)((r)->rb_parent_color & ~3))
    118 #define rb_color(r)   ((r)->rb_parent_color & 1)
    119 #define rb_is_red(r)   (!rb_color(r))
    120 #define rb_is_black(r) rb_color(r)
    121 #define rb_set_red(r)  do { (r)->rb_parent_color &= ~1; } while (0)
    122 #define rb_set_black(r)  do { (r)->rb_parent_color |= 1; } while (0)
    123 
    124 static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
    125 {
    126     rb->rb_parent_color = (rb->rb_parent_color & 3) | (unsigned long)p;
    127 }
    128 static inline void rb_set_color(struct rb_node *rb, int color)
    129 {
    130     rb->rb_parent_color = (rb->rb_parent_color & ~1) | color;
    131 }
    132 
    133 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
    134 
    135 #define container_of(ptr, type, member) ({          
    136     const typeof( ((type *)0)->member ) *__mptr = (ptr);    
    137     (type *)( (char *)__mptr - offsetof(type,member) );})
    138 
    139 #define RB_ROOT    (struct rb_root) { NULL, }
    140 #define    rb_entry(ptr, type, member) container_of(ptr, type, member)
    141 
    142 #define RB_EMPTY_ROOT(root)    ((root)->rb_node == NULL)
    143 #define RB_EMPTY_NODE(node)    (rb_parent(node) == node)
    144 #define RB_CLEAR_NODE(node)    (rb_set_parent(node, node))
    145 
    146 static inline void rb_init_node(struct rb_node *rb)
    147 {
    148     rb->rb_parent_color = 0;
    149     rb->rb_right = NULL;
    150     rb->rb_left = NULL;
    151     RB_CLEAR_NODE(rb);
    152 }
    153 
    154 extern void rb_insert_color(struct rb_node *, struct rb_root *);
    155 extern void rb_erase(struct rb_node *, struct rb_root *);
    156 
    157 typedef void (*rb_augment_f)(struct rb_node *node, void *data);
    158 
    159 extern void rb_augment_insert(struct rb_node *node,
    160                   rb_augment_f func, void *data);
    161 extern struct rb_node *rb_augment_erase_begin(struct rb_node *node);
    162 extern void rb_augment_erase_end(struct rb_node *node,
    163                  rb_augment_f func, void *data);
    164 
    165 /* Find logical next and previous nodes in a tree */
    166 extern struct rb_node *rb_next(const struct rb_node *);
    167 extern struct rb_node *rb_prev(const struct rb_node *);
    168 extern struct rb_node *rb_first(const struct rb_root *);
    169 extern struct rb_node *rb_last(const struct rb_root *);
    170 
    171 /* Fast replacement of a single node without remove/rebalance/add/rebalance */
    172 extern void rb_replace_node(struct rb_node *victim, struct rb_node *new, 
    173                 struct rb_root *root);
    174 
    175 static inline void rb_link_node(struct rb_node * node, struct rb_node * parent,
    176                 struct rb_node ** rb_link)
    177 {
    178     node->rb_parent_color = (unsigned long )parent;
    179     node->rb_left = node->rb_right = NULL;
    180 
    181     *rb_link = node;
    182 }
    183 
    184 #endif    /* _LINUX_RBTREE_H */
    View Code

    红黑树的实现文件(rbtree.c)

      1 /*
      2   Red Black Trees
      3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
      4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
      5   
      6   This program is free software; you can redistribute it and/or modify
      7   it under the terms of the GNU General Public License as published by
      8   the Free Software Foundation; either version 2 of the License, or
      9   (at your option) any later version.
     10 
     11   This program is distributed in the hope that it will be useful,
     12   but WITHOUT ANY WARRANTY; without even the implied warranty of
     13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14   GNU General Public License for more details.
     15 
     16   You should have received a copy of the GNU General Public License
     17   along with this program; if not, write to the Free Software
     18   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     19 
     20   linux/lib/rbtree.c
     21 */
     22 
     23 #include "rbtree.h"
     24 
     25 static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
     26 {
     27     struct rb_node *right = node->rb_right;
     28     struct rb_node *parent = rb_parent(node);
     29 
     30     if ((node->rb_right = right->rb_left))
     31         rb_set_parent(right->rb_left, node);
     32     right->rb_left = node;
     33 
     34     rb_set_parent(right, parent);
     35 
     36     if (parent)
     37     {
     38         if (node == parent->rb_left)
     39             parent->rb_left = right;
     40         else
     41             parent->rb_right = right;
     42     }
     43     else
     44         root->rb_node = right;
     45     rb_set_parent(node, right);
     46 }
     47 
     48 static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
     49 {
     50     struct rb_node *left = node->rb_left;
     51     struct rb_node *parent = rb_parent(node);
     52 
     53     if ((node->rb_left = left->rb_right))
     54         rb_set_parent(left->rb_right, node);
     55     left->rb_right = node;
     56 
     57     rb_set_parent(left, parent);
     58 
     59     if (parent)
     60     {
     61         if (node == parent->rb_right)
     62             parent->rb_right = left;
     63         else
     64             parent->rb_left = left;
     65     }
     66     else
     67         root->rb_node = left;
     68     rb_set_parent(node, left);
     69 }
     70 
     71 void rb_insert_color(struct rb_node *node, struct rb_root *root)
     72 {
     73     struct rb_node *parent, *gparent;
     74 
     75     while ((parent = rb_parent(node)) && rb_is_red(parent))
     76     {
     77         gparent = rb_parent(parent);
     78 
     79         if (parent == gparent->rb_left)
     80         {
     81             {
     82                 register struct rb_node *uncle = gparent->rb_right;
     83                 if (uncle && rb_is_red(uncle))
     84                 {
     85                     rb_set_black(uncle);
     86                     rb_set_black(parent);
     87                     rb_set_red(gparent);
     88                     node = gparent;
     89                     continue;
     90                 }
     91             }
     92 
     93             if (parent->rb_right == node)
     94             {
     95                 register struct rb_node *tmp;
     96                 __rb_rotate_left(parent, root);
     97                 tmp = parent;
     98                 parent = node;
     99                 node = tmp;
    100             }
    101 
    102             rb_set_black(parent);
    103             rb_set_red(gparent);
    104             __rb_rotate_right(gparent, root);
    105         } else {
    106             {
    107                 register struct rb_node *uncle = gparent->rb_left;
    108                 if (uncle && rb_is_red(uncle))
    109                 {
    110                     rb_set_black(uncle);
    111                     rb_set_black(parent);
    112                     rb_set_red(gparent);
    113                     node = gparent;
    114                     continue;
    115                 }
    116             }
    117 
    118             if (parent->rb_left == node)
    119             {
    120                 register struct rb_node *tmp;
    121                 __rb_rotate_right(parent, root);
    122                 tmp = parent;
    123                 parent = node;
    124                 node = tmp;
    125             }
    126 
    127             rb_set_black(parent);
    128             rb_set_red(gparent);
    129             __rb_rotate_left(gparent, root);
    130         }
    131     }
    132 
    133     rb_set_black(root->rb_node);
    134 }
    135 
    136 static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
    137                  struct rb_root *root)
    138 {
    139     struct rb_node *other;
    140 
    141     while ((!node || rb_is_black(node)) && node != root->rb_node)
    142     {
    143         if (parent->rb_left == node)
    144         {
    145             other = parent->rb_right;
    146             if (rb_is_red(other))
    147             {
    148                 rb_set_black(other);
    149                 rb_set_red(parent);
    150                 __rb_rotate_left(parent, root);
    151                 other = parent->rb_right;
    152             }
    153             if ((!other->rb_left || rb_is_black(other->rb_left)) &&
    154                 (!other->rb_right || rb_is_black(other->rb_right)))
    155             {
    156                 rb_set_red(other);
    157                 node = parent;
    158                 parent = rb_parent(node);
    159             }
    160             else
    161             {
    162                 if (!other->rb_right || rb_is_black(other->rb_right))
    163                 {
    164                     rb_set_black(other->rb_left);
    165                     rb_set_red(other);
    166                     __rb_rotate_right(other, root);
    167                     other = parent->rb_right;
    168                 }
    169                 rb_set_color(other, rb_color(parent));
    170                 rb_set_black(parent);
    171                 rb_set_black(other->rb_right);
    172                 __rb_rotate_left(parent, root);
    173                 node = root->rb_node;
    174                 break;
    175             }
    176         }
    177         else
    178         {
    179             other = parent->rb_left;
    180             if (rb_is_red(other))
    181             {
    182                 rb_set_black(other);
    183                 rb_set_red(parent);
    184                 __rb_rotate_right(parent, root);
    185                 other = parent->rb_left;
    186             }
    187             if ((!other->rb_left || rb_is_black(other->rb_left)) &&
    188                 (!other->rb_right || rb_is_black(other->rb_right)))
    189             {
    190                 rb_set_red(other);
    191                 node = parent;
    192                 parent = rb_parent(node);
    193             }
    194             else
    195             {
    196                 if (!other->rb_left || rb_is_black(other->rb_left))
    197                 {
    198                     rb_set_black(other->rb_right);
    199                     rb_set_red(other);
    200                     __rb_rotate_left(other, root);
    201                     other = parent->rb_left;
    202                 }
    203                 rb_set_color(other, rb_color(parent));
    204                 rb_set_black(parent);
    205                 rb_set_black(other->rb_left);
    206                 __rb_rotate_right(parent, root);
    207                 node = root->rb_node;
    208                 break;
    209             }
    210         }
    211     }
    212     if (node)
    213         rb_set_black(node);
    214 }
    215 
    216 void rb_erase(struct rb_node *node, struct rb_root *root)
    217 {
    218     struct rb_node *child, *parent;
    219     int color;
    220 
    221     if (!node->rb_left)
    222         child = node->rb_right;
    223     else if (!node->rb_right)
    224         child = node->rb_left;
    225     else
    226     {
    227         struct rb_node *old = node, *left;
    228 
    229         node = node->rb_right;
    230         while ((left = node->rb_left) != NULL)
    231             node = left;
    232 
    233         if (rb_parent(old)) {
    234             if (rb_parent(old)->rb_left == old)
    235                 rb_parent(old)->rb_left = node;
    236             else
    237                 rb_parent(old)->rb_right = node;
    238         } else
    239             root->rb_node = node;
    240 
    241         child = node->rb_right;
    242         parent = rb_parent(node);
    243         color = rb_color(node);
    244 
    245         if (parent == old) {
    246             parent = node;
    247         } else {
    248             if (child)
    249                 rb_set_parent(child, parent);
    250             parent->rb_left = child;
    251 
    252             node->rb_right = old->rb_right;
    253             rb_set_parent(old->rb_right, node);
    254         }
    255 
    256         node->rb_parent_color = old->rb_parent_color;
    257         node->rb_left = old->rb_left;
    258         rb_set_parent(old->rb_left, node);
    259 
    260         goto color;
    261     }
    262 
    263     parent = rb_parent(node);
    264     color = rb_color(node);
    265 
    266     if (child)
    267         rb_set_parent(child, parent);
    268     if (parent)
    269     {
    270         if (parent->rb_left == node)
    271             parent->rb_left = child;
    272         else
    273             parent->rb_right = child;
    274     }
    275     else
    276         root->rb_node = child;
    277 
    278  color:
    279     if (color == RB_BLACK)
    280         __rb_erase_color(child, parent, root);
    281 }
    282 
    283 static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
    284 {
    285     struct rb_node *parent;
    286 
    287 up:
    288     func(node, data);
    289     parent = rb_parent(node);
    290     if (!parent)
    291         return;
    292 
    293     if (node == parent->rb_left && parent->rb_right)
    294         func(parent->rb_right, data);
    295     else if (parent->rb_left)
    296         func(parent->rb_left, data);
    297 
    298     node = parent;
    299     goto up;
    300 }
    301 
    302 /*
    303  * after inserting @node into the tree, update the tree to account for
    304  * both the new entry and any damage done by rebalance
    305  */
    306 void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
    307 {
    308     if (node->rb_left)
    309         node = node->rb_left;
    310     else if (node->rb_right)
    311         node = node->rb_right;
    312 
    313     rb_augment_path(node, func, data);
    314 }
    315 
    316 /*
    317  * before removing the node, find the deepest node on the rebalance path
    318  * that will still be there after @node gets removed
    319  */
    320 struct rb_node *rb_augment_erase_begin(struct rb_node *node)
    321 {
    322     struct rb_node *deepest;
    323 
    324     if (!node->rb_right && !node->rb_left)
    325         deepest = rb_parent(node);
    326     else if (!node->rb_right)
    327         deepest = node->rb_left;
    328     else if (!node->rb_left)
    329         deepest = node->rb_right;
    330     else {
    331         deepest = rb_next(node);
    332         if (deepest->rb_right)
    333             deepest = deepest->rb_right;
    334         else if (rb_parent(deepest) != node)
    335             deepest = rb_parent(deepest);
    336     }
    337 
    338     return deepest;
    339 }
    340 
    341 /*
    342  * after removal, update the tree to account for the removed entry
    343  * and any rebalance damage.
    344  */
    345 void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
    346 {
    347     if (node)
    348         rb_augment_path(node, func, data);
    349 }
    350 
    351 /*
    352  * This function returns the first node (in sort order) of the tree.
    353  */
    354 struct rb_node *rb_first(const struct rb_root *root)
    355 {
    356     struct rb_node    *n;
    357 
    358     n = root->rb_node;
    359     if (!n)
    360         return NULL;
    361     while (n->rb_left)
    362         n = n->rb_left;
    363     return n;
    364 }
    365 
    366 struct rb_node *rb_last(const struct rb_root *root)
    367 {
    368     struct rb_node    *n;
    369 
    370     n = root->rb_node;
    371     if (!n)
    372         return NULL;
    373     while (n->rb_right)
    374         n = n->rb_right;
    375     return n;
    376 }
    377 
    378 struct rb_node *rb_next(const struct rb_node *node)
    379 {
    380     struct rb_node *parent;
    381 
    382     if (rb_parent(node) == node)
    383         return NULL;
    384 
    385     /* If we have a right-hand child, go down and then left as far
    386        as we can. */
    387     if (node->rb_right) {
    388         node = node->rb_right; 
    389         while (node->rb_left)
    390             node=node->rb_left;
    391         return (struct rb_node *)node;
    392     }
    393 
    394     /* No right-hand children.  Everything down and left is
    395        smaller than us, so any 'next' node must be in the general
    396        direction of our parent. Go up the tree; any time the
    397        ancestor is a right-hand child of its parent, keep going
    398        up. First time it's a left-hand child of its parent, said
    399        parent is our 'next' node. */
    400     while ((parent = rb_parent(node)) && node == parent->rb_right)
    401         node = parent;
    402 
    403     return parent;
    404 }
    405 
    406 struct rb_node *rb_prev(const struct rb_node *node)
    407 {
    408     struct rb_node *parent;
    409 
    410     if (rb_parent(node) == node)
    411         return NULL;
    412 
    413     /* If we have a left-hand child, go down and then right as far
    414        as we can. */
    415     if (node->rb_left) {
    416         node = node->rb_left; 
    417         while (node->rb_right)
    418             node=node->rb_right;
    419         return (struct rb_node *)node;
    420     }
    421 
    422     /* No left-hand children. Go up till we find an ancestor which
    423        is a right-hand child of its parent */
    424     while ((parent = rb_parent(node)) && node == parent->rb_left)
    425         node = parent;
    426 
    427     return parent;
    428 }
    429 
    430 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
    431              struct rb_root *root)
    432 {
    433     struct rb_node *parent = rb_parent(victim);
    434 
    435     /* Set the surrounding nodes to point to the replacement */
    436     if (parent) {
    437         if (victim == parent->rb_left)
    438             parent->rb_left = new;
    439         else
    440             parent->rb_right = new;
    441     } else {
    442         root->rb_node = new;
    443     }
    444     if (victim->rb_left)
    445         rb_set_parent(victim->rb_left, new);
    446     if (victim->rb_right)
    447         rb_set_parent(victim->rb_right, new);
    448 
    449     /* Copy the pointers/colour from the victim to the replacement */
    450     *new = *victim;
    451 }
    View Code

    红黑树的测试文件(test.c)

      1 /**
      2  * 根据Linux Kernel定义的红黑树(Red Black Tree)
      3  *
      4  * @author skywang
      5  * @date 2013/11/18
      6  */
      7 
      8 #include <stdio.h>
      9 #include <stdlib.h>
     10 #include "rbtree.h"
     11 
     12 #define CHECK_INSERT 0    // "插入"动作的检测开关(0,关闭;1,打开)
     13 #define CHECK_DELETE 0    // "删除"动作的检测开关(0,关闭;1,打开)
     14 #define LENGTH(a) ( (sizeof(a)) / (sizeof(a[0])) )
     15 
     16 typedef int Type;
     17 
     18 struct my_node {
     19     struct rb_node rb_node;    // 红黑树节点
     20     Type key;                // 键值
     21     // ... 用户自定义的数据
     22 };
     23 
     24 /*
     25  * 查找"红黑树"中键值为key的节点。没找到的话,返回NULL。
     26  */
     27 struct my_node *my_search(struct rb_root *root, Type key)
     28 {
     29     struct rb_node *rbnode = root->rb_node;
     30 
     31     while (rbnode!=NULL)
     32     {
     33         struct my_node *mynode = container_of(rbnode, struct my_node, rb_node);
     34 
     35         if (key < mynode->key)
     36             rbnode = rbnode->rb_left;
     37         else if (key > mynode->key)
     38             rbnode = rbnode->rb_right;
     39         else
     40             return mynode;
     41     }
     42     
     43     return NULL;
     44 }
     45 
     46 /*
     47  * 将key插入到红黑树中。插入成功,返回0;失败返回-1。
     48  */
     49 int my_insert(struct rb_root *root, Type key)
     50 {
     51     struct my_node *mynode; // 新建结点
     52     struct rb_node **tmp = &(root->rb_node), *parent = NULL;
     53 
     54     /* Figure out where to put new node */
     55     while (*tmp)
     56     {
     57         struct my_node *my = container_of(*tmp, struct my_node, rb_node);
     58 
     59         parent = *tmp;
     60         if (key < my->key)
     61             tmp = &((*tmp)->rb_left);
     62         else if (key > my->key)
     63             tmp = &((*tmp)->rb_right);
     64         else
     65             return -1;
     66     }
     67 
     68     // 如果新建结点失败,则返回。
     69     if ((mynode=malloc(sizeof(struct my_node))) == NULL)
     70         return -1; 
     71     mynode->key = key;
     72 
     73     /* Add new node and rebalance tree. */
     74     rb_link_node(&mynode->rb_node, parent, tmp);
     75     rb_insert_color(&mynode->rb_node, root);
     76 
     77     return 0;
     78 }
     79 
     80 /* 
     81  * 删除键值为key的结点
     82  */
     83 void my_delete(struct rb_root *root, Type key)
     84 {
     85     struct my_node *mynode;
     86 
     87     // 在红黑树中查找key对应的节点mynode
     88     if ((mynode = my_search(root, key)) == NULL)
     89         return ;
     90 
     91     // 从红黑树中删除节点mynode
     92     rb_erase(&mynode->rb_node, root);
     93     free(mynode);
     94 }
     95 
     96 /*
     97  * 打印"红黑树"
     98  */
     99 static void print_rbtree(struct rb_node *tree, Type key, int direction)
    100 {
    101     if(tree != NULL)
    102     {   
    103         if(direction==0)    // tree是根节点
    104             printf("%2d(B) is root
    ", key);
    105         else                // tree是分支节点
    106             printf("%2d(%s) is %2d's %6s child
    ", key, rb_is_black(tree)?"B":"R", key, direction==1?"right" : "left");
    107 
    108         if (tree->rb_left)
    109             print_rbtree(tree->rb_left, rb_entry(tree->rb_left, struct my_node, rb_node)->key, -1);
    110         if (tree->rb_right)
    111             print_rbtree(tree->rb_right,rb_entry(tree->rb_right, struct my_node, rb_node)->key,  1); 
    112     }   
    113 }
    114 
    115 void my_print(struct rb_root *root)
    116 {
    117     if (root!=NULL && root->rb_node!=NULL)
    118         print_rbtree(root->rb_node, rb_entry(root->rb_node, struct my_node, rb_node)->key,  0); 
    119 }
    120 
    121 
    122 void main()
    123 {
    124     int a[] = {10, 40, 30, 60, 90, 70, 20, 50, 80};
    125     int i, ilen=LENGTH(a);
    126     struct rb_root mytree = RB_ROOT;
    127 
    128     printf("== 原始数据: ");
    129     for(i=0; i<ilen; i++)
    130         printf("%d ", a[i]);
    131     printf("
    ");
    132 
    133     for (i=0; i < ilen; i++) 
    134     {
    135         my_insert(&mytree, a[i]);
    136 #if CHECK_INSERT
    137         printf("== 添加节点: %d
    ", a[i]);
    138         printf("== 树的详细信息: 
    ");
    139         my_print(&mytree);
    140         printf("
    ");
    141 #endif
    142 
    143     }
    144 
    145 #if CHECK_DELETE
    146     for (i=0; i<ilen; i++) {
    147         my_delete(&mytree, a[i]);
    148 
    149         printf("== 删除节点: %d
    ", a[i]);
    150         printf("== 树的详细信息: 
    ");
    151         my_print(&mytree);
    152         printf("
    ");
    153     }
    154 #endif
    155 }
    View Code

    rbtree.h和rbtree.c基本上是从Linux 3.0的Kernel中移植出来的。仅仅只添加了offestof和container_of两个宏,这两个宏在文章"Linux内核中双向链表的经典实现"中已经介绍过了,这里就不再重复说明了。
    test.c中包含了两部分内容:一是,基于内核红黑树接口,自定义的一个结构体,并提供了相应的接口(添加、删除、搜索、打印)。二是,包含了相应的测试程序。

  • 相关阅读:
    结对项目--四则运算“软件”之升级版
    个人项目--多元四则运算
    《构建之法》1-5章后感
    git bash的安装与配置
    随笔
    numpy数组及处理:效率对比
    完整的中英文词频统计
    组合数据类型,英文词频统计
    9.13作业2(完整温度转换、数字游戏、解析身份证号...)
    Mad Libs游戏,华氏与摄氏转换
  • 原文地址:https://www.cnblogs.com/skywang12345/p/3624202.html
Copyright © 2020-2023  润新知