[CC-PERMUTE]Just Some Permutations 3
题目大意:
(T(Tle10^5))次询问,每次询问有多少长度为(n(nle10^6))的排列,满足任意相邻两个数的和不超过(m)。
思路:
找规律。
首先打表出来是这样的:
1: 1
2: 0 0 2
3: 0 0 0 2 6
4: 0 0 0 0 4 12 24
5: 0 0 0 0 0 4 36 72 120
6: 0 0 0 0 0 0 8 72 288 480 720
7: 0 0 0 0 0 0 0 8 216 864 2400 3600 5040
8: 0 0 0 0 0 0 0 0 16 432 3456 9600 21600 30240 40320
9: 0 0 0 0 0 0 0 0 0 16 1296 10368 48000 108000 211680 282240 362880
10: 0 0 0 0 0 0 0 0 0 0 32 2592 41472 192000 648000 1270080 2257920 2903040 3628800
把左边的(0)去掉,就是:
2:0 2
3:0 2 6
4:0 4 12 24
5:0 4 36 72 120
6:0 8 72 288 480 720
7:0 8 216 864 2400 3600 5040
8:0 16 432 3456 9600 21600 30240 40320
9:0 16 1296 10368 48000 108000 211680 282240 362880
10:0 32 2592 41472 192000 648000 1270080 2257920 2903040 3628800
发现最上面一层斜线就是阶乘,往下就是不停乘(m,m-1)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e6+1,mod=1e9+7;
int p[N],fac[N];
inline int power(int a,int k) {
int ret=1;
for(;k;k>>=1) {
if(k&1) ret=(int64)ret*a%mod;
a=(int64)a*a%mod;
}
return ret;
}
int main() {
for(register int i=fac[0]=1;i<N;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
for(register int T=getint();T;T--) {
int n=getint(),m=getint();
if(n==1) {
puts("1");
continue;
}
if(m>=n*2-1) {
printf("%d
",fac[n]);
continue;
}
if(m<n+1) {
puts("0");
continue;
}
m-=n-1;
n-=m;
int ans=fac[m];
ans=(int64)ans*power((int64)m*(m-1)%mod,n/2)%mod;
if(n&1) ans=(int64)ans*(m-1)%mod;
printf("%d
",ans);
}
return 0;
}