• [PA2012]Dwa torty


    [PA2012]Dwa torty

    题目大意:

    给定两个排列(A_{1sim n},B_{1sim n}),你需要将两个排列用最少的次数消除。

    消除只能从头消除,一次消除可以从两个排列的头部取两个不同的数消去,或者从一个排列头部取一个数消去。

    问最少的消除次数。

    (nle10^6)

    思路:

    (f[i][j])表示已经取了(A_{1sim i})(B_{1sim j})所需的最小代价。

    (A_i=B_j)时,(f[i][j]=min(f[i-1][j],f[j-1][i])+1)

    (A_i e B_j)时,令(t)为使得(A_{i-t}=B_{j-t})的最小的(t),则(f[i][j]=f[i-t][j-t]+t)

    (A_i=B_j)的状态进行记忆化,(A_i e B_j)的状态可以在(mathcal O(log n))的时间内转移到(A_i=B_j)的状态。

    (A_i=B_j)的状态总共有(n)个,则至多需要(2n)(A_i e B_j)的状态。因此时间复杂度(mathcal O(nlog n))

    源代码:

    #include<set>
    #include<cstdio>
    #include<cctype>
    inline int getint() {
    	register char ch;
    	while(!isdigit(ch=getchar()));
    	register int x=ch^'0';
    	while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    	return x;
    }
    const int N=1e6+1;
    int a[N],b[N],p[N],f[N];
    std::set<std::pair<int,int>> set;
    int dp(const int &p,const int &q) {
    	if(!p||!q) return p+q;
    	if(a[p]==b[q]) return f[p]=f[p]?:std::min(dp(p,q-1),dp(p-1,q))+1;
    	const auto k=std::prev(set.upper_bound(std::make_pair(p-q,p)));
    	if(k->first!=p-q) return std::max(p,q);
    	const int r=k->second;
    	return dp(r,r-p+q)+p-r;
    }
    int main() {
    	const int n=getint();
    	for(register int i=1;i<=n;i++) a[i]=getint();
    	for(register int i=1;i<=n;i++) b[i]=getint();
    	for(register int i=1;i<=n;i++) p[a[i]]=i;
    	set.insert(std::make_pair(-n,0));
    	for(register int i=0;i<=n;i++) {
    		set.insert(std::make_pair(p[b[i]]-i,p[b[i]]));
    	}
    	printf("%d
    ",dp(n,n));
    	return 0;
    }
    
  • 相关阅读:
    flask的简单使用
    Android Studio 使用Lambda表达式
    安卓SDK更新 国内镜像站点记录
    REACT-NATIVE入门(环境搭建及HELLOWORLD)
    深入理解Android 读感(一)
    JNI初入手
    (转)c++ 中的using namespace std是什么意思,什么时候用
    (转)const char to LPCTSTR不能转化问题
    Git常用操作之add操作
    Git日志操作
  • 原文地址:https://www.cnblogs.com/skylee03/p/10910028.html
Copyright © 2020-2023  润新知