• poj 3714 Raid(平面最近点对)


    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 7473   Accepted: 2221

    Description

    After successive failures in the battles against the Union, the Empire retreated to its last stronghold. Depending on its powerful defense system, the Empire repelled the six waves of Union's attack. After several sleepless nights of thinking, Arthur, General of the Union, noticed that the only weakness of the defense system was its energy supply. The system was charged by N nuclear power stations and breaking down any of them would disable the system.

    The general soon started a raid to the stations by N special agents who were paradroped into the stronghold. Unfortunately they failed to land at the expected positions due to the attack by the Empire Air Force. As an experienced general, Arthur soon realized that he needed to rearrange the plan. The first thing he wants to know now is that which agent is the nearest to any power station. Could you, the chief officer, help the general to calculate the minimum distance between an agent and a station?

    Input

    The first line is a integer T representing the number of test cases. Each test case begins with an integer N (1 ≤ N ≤ 100000). The next N lines describe the positions of the stations. Each line consists of two i

    ntegers X (0 ≤ X ≤ 1000000000) and Y (0 ≤ Y ≤ 1000000000) indicating the positions of the station. The next following N lines describe the positions of the agents. Each line consists of two integers X (0 ≤ X ≤ 1000000000) and Y (0 ≤ Y ≤ 1000000000) indicating the positions of the agent.  

    Output

    For each test case output the minimum distance with precision of three decimal placed in a separate line.

    Sample Input

    2
    4
    0 0
    0 1
    1 0
    1 1
    2 2
    2 3
    3 2
    3 3
    4
    0 0
    0 0
    0 0
    0 0
    0 0
    0 0
    0 0
    0 0

    Sample Output

    1.414
    0.000

    Source

     
     
     
     
     
     
    最近点对,采用分治方法。过程:
    1对原数组依据x左标从小到大排序。
    2二分数组,左边求出最小值,右边求出最小值,我们求最小的。
    3找出对于左右两边的可能小于当前最小值的最近点对,更新最小值。
     
    本题很水,直接套模板就秒过!!!

    这题目需要区分一下点,让我们求的是闪兵到任意一个核电站的最短距离,加一个标志就可以了。(若是同一类的点就规定距离为oo!!)
     
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <algorithm>
      4 #include <cmath>
      5 #include <cstring>
      6 
      7 #define DX(x) ((x) * (x))
      8 using namespace std;
      9 
     10 
     11 const int MAX = 200000 + 10;
     12 const double INF = 10e100;
     13 struct Point
     14 {
     15      double x, y;
     16      int index,flag;//flag分类!! 
     17 }A[MAX], B[MAX], C[MAX];
     18 
     19 bool compX(const Point& a, const Point& b)
     20 {
     21     if(a.x == b.x)
     22         return a.y < b.y;
     23     return a.x < b.x;
     24 }
    
     25 bool compY(const Point& a, const Point& b)
     26 {
     27     if(a.y == b.y)
     28          return a.x < b.x;
     29        return a.y < b.y;
     30 }
     31  
     32 inline double getMin(double a, double b)
     33 {
     34     return a < b ? a : b;
     35 }
     36  
     37 double getDist(Point& a, Point& b)
     38 {
     39     if(a.flag==b.flag)return INF;//同类规定距离为oo!! 
     40      return sqrt(DX(a.x - b.x) + DX(a.y - b.y));
     41 }
     42 
     43 void merge(Point p[], Point q[], int s, int m, int t)
     44 {
     45    int i, j, k;
     46    for(i = s, j = m + 1, k = s; i <= m && j <=t;)
     47    {
     48         if(q[i].y > q[j].y)
     49             p[k++] = q[j], j++;
     50          else
     51             p[k++] = q[i], i++;
     52    }
     53    while(i <= m)
     54         p[k++] = q[i++];
     55    while(j <= t)
     56         p[k++] = q[j++];
     57 }
     58 
     59 double closest(Point a[], Point b[], Point c[], int p, int q)
     60 {
     61     if(q - p == 1)
     62          return getDist(a[p], a[q]);
     63     if(q - p == 2)
     64     {
     65         double x1 = getDist(a[p], a[q]);
     66         double x2 = getDist(a[p + 1], a[q]);
     67         double x3 = getDist(a[p], a[p + 1]);
     68         return getMin(x1, getMin(x2, x3));
     69     }
     70     int i, j, k, m = (p + q) / 2;
     71     double d1, d2;
     72     for(i = p, j = p, k = m + 1; i <= q; ++i)
     73     {
     74         if(b[i].index <= m)
     75              c[j++] = b[i];
     76          else
     77             c[k++] = b[i];
     78     }
     79     d1 = closest(a, c, b, p, m);
     80     d2 = closest(a, c, b, m + 1, q);
     81     double dm = getMin(d1, d2);
     82     merge(b, c, p, m, q);
     83     for(i = p, k = p; i <= q; ++i)
     84     {
     85          if(fabs(b[i].x - b[m].x) < dm)
     86              c[k++] = b[i];
     87     }
     88     for(i = p; i < k; ++i)
     89         for(j = i + 1; j < k && c[j].y - c[i].y < dm; ++j)
     90          {
     91              double temp = getDist(c[i], c[j]);
     92               if(temp < dm)
     93                  dm = temp;
     94            }
     95       return dm;
     96 }
     97 int main()
     98 {
     99     //freopen("in.txt", "r", stdin);
    100     int T,n;
    101     scanf("%d",&T);
    102     while( T--)
    103     {
    104         scanf("%d", &n);
    105         for(int i = 0; i < n; ++i)
    106             scanf("%lf%lf", &A[i].x, &A[i].y),A[i].flag=0;
    107          for(int i = 0; i < n; ++i)
    108              scanf("%lf%lf", &A[i+n].x, &A[i+n].y),A[i+n].flag=1;
    109          sort(A, A + 2*n, compX);
    110           for(int i = 0; i < 2*n; ++i)
    111              A[i].index = i;
    112         memcpy(B, A, 2*n * sizeof(B[0]));
    113         sort(B, B + 2*n, compY);
    114         double d = closest(A, B, C, 0, 2*n - 1);
    115         printf("%.3f
    ", d);
    116     }
    117     return 0;
    118 }
    View Code
     
  • 相关阅读:
    MYSQL 5.7修改密码,登录问题
    linux 系统 cp: omitting directory 问题解决
    闭包函数是什么
    ecshop 前台个人中心修改侧边栏 和 侧边栏显示不全 或 导航现实不全
    ecshop 前台分页
    php 5.3新增的闭包语法介绍function() use() {}
    剖析 Linux hypervisor
    长久的深情能否维系
    私有云的迁移:从VMware到OpenStack
    Openstack 架构简述
  • 原文地址:https://www.cnblogs.com/skykill/p/3234540.html
Copyright © 2020-2023  润新知