• ElasticSearch权威指南学习(映射和分析)


    概念

    1. 映射(mapping)机制用于进行字段类型确认,将每个字段匹配为一种确定的数据类型(string, number, booleans, date等)。+
    2. 分析(analysis)机制用于进行全文文本(Full Text)的分词,以建立供搜索用的反向索引。

    数据类型差异

    1. 在索引中有12个tweets,只有一个包含日期2014-09-15,但是我们看看下面查询中的total hits。
    GET /_search?q=2014              # 12 个结果
    GET /_search?q=2014-09-15        # 还是 12 个结果 !
    GET /_search?q=date:2014-09-15   # 1  一个结果
    GET /_search?q=date:2014         # 0  个结果 !
    
    1. 解读我们的文档结构
    GET /gb/_mapping/tweet
    
    {
       "gb": {
          "mappings": {
             "tweet": {
                "properties": {
                   "date": {
                      "type": "date",
                      "format": "dateOptionalTime"
                   },
                   "name": {
                      "type": "string"
                   },
                   "tweet": {
                      "type": "string"
                   },
                   "user_id": {
                      "type": "long"
                   }
                }
             }
          }
       }
    }
    
    1. Elasticsearch为对字段类型进行猜测,动态生成了字段和类型的映射关系。返回的信息显示了date字段被识别为date类型。
    2. date类型的字段和string类型的字段的索引方式是不同的,因此导致查询结果的不同

    确切值(Exact values) vs. 全文文本(Full text)

    1. Elasticsearch中的数据可以大致分为两种类型:确切值 及 全文文本。
    2. 确切值是确定的。确切值"Foo"和"foo"就并不相同。确切值2014和2014-09-15也不相同。
    3. 全文文本,从另一个角度来说是文本化的数据,比如一篇推文(Twitter的文章)或邮件正文。
    4. 为了方便在全文文本字段中进行这些类型的查询,Elasticsearch首先对文本分析(analyzes),然后使用结果建立一个倒排索引

    倒排索引

    1. Elasticsearch使用一种叫做倒排索引(inverted index)的结构来做快速的全文搜索。倒排索引由在文档中出现的唯一的单词列表,以及对于每个单词在文档中的位置组成。
    2. 我们有两个文档,每个文档content字段包含:
    The quick brown fox jumped over the lazy dog
    Quick brown foxes leap over lazy dogs in summer
    
    1. 为了创建倒排索引,我们首先切分每个文档的content字段为单独的单词,我们把它们叫做词(terms)或者表征(tokens)
    2. 把所有的唯一词放入列表并排序,结果是这个样子的
    Term Doc_1 Doc_2
    Quick X
    The X
    brown X X
    dog X
    dogs X
    fox X
    foxes X
    in X
    jumped X
    lazy X X
    leap X
    over X X
    quick X
    summer X
    the X
    1. 现在,如果我们想搜索"quick brown",我们只需要找到每个词在哪个文档中出现即可:
    Term Doc_1 Doc_2
    brown X X
    quick X
    ----- ------- -----
    Total 2 1
    1. 两个文档都匹配,但是第一个比第二个有更多的匹配项。 如果我们加入简单的相似度算法(similarity algorithm),计算匹配单词的数目,这样我们就可以说第一个文档比第二个匹配度更高——对于我们的查询具有更多相关性。

    2. 但是这样我们仍旧查不到像Quick,Dog这样的词

    3. 不过,如果我们使用相同的标准化规则处理查询字符串的content字段,查询将变成"+quick +fox",这样就可以匹配到两个文档。

    4. 这个标记化和标准化的过程叫做分析(analysis)

    分析和分析器

    1. 分析(analysis)是这样一个过程:
    • 首先,标记化一个文本块为适用于倒排索引单独的词(term)
    • 然后标准化这些词为标准形式,提高它们的“可搜索性”或“查全率”
    1. 字符过滤器

      • 首先字符串经过字符过滤器(character filter),它们的工作是在标记化前处理字符串。字符过滤器能够去除HTML标记,或者转换"&"为"and"。
    2. 分词器

      • 下一步,分词器(tokenizer)被标记化成独立的词。一个简单的分词器(tokenizer)可以根据空格或逗号将单词分开
    3. 标记过滤

      • 最后,每个词都通过所有标记过滤(token filters),它可以修改词(例如将"Quick"转为小写),去掉词(例如停用词像"a"、"and"、"the"等等),或者增加词(例如同义词像"jump"和"leap")
    4. 内建的分析器

      • 下面我们列出了最重要的几个分析器,来演示这个字符串分词后的表现差异

      "Set the shape to semi-transparent by calling set_trans(5)"

      • 标准分析器

        • 它根据Unicode Consortium的定义的单词边界(word boundaries)来切分文本,然后去掉大部分标点符号。最后,把所有词转为小写。产生的结果为:

        set, the, shape, to, semi, transparent, by, calling, set_trans, 5

      • 简单分析器

        • 简单分析器将非单个字母的文本切分,然后把每个词转为小写。产生的结果为:

        set, the, shape, to, semi, transparent, by, calling, set, trans

      • 空格分析器

        • 空格分析器依据空格切分文本。它不转换小写。产生结果为:

        Set, the, shape, to, semi-transparent, by, calling, set_trans(5)

      • 语言分析器

        • 特定语言分析器适用于很多语言。它们能够考虑到特定语言的特性。
        • english分析器将会产生以下结果:

        set, shape, semi, transpar, call, set_tran, 5

      • 测试分析器

        • 为了更好的理解如何进行,你可以使用analyze API来查看文本是如何被分析的。在查询字符串参数中指定要使用的分析器,被分析的文本做为请求体:

        GET /_analyze?analyzer=standard&text=Text to analyze

        • 结果中每个节点在代表一个词:
        {
           "tokens": [
              {
                 "token":        "text",
                 "start_offset": 0,
                 "end_offset":   4,
                 "type":         "<ALPHANUM>",
                 "position":     1
              },
              {
                 "token":        "to",
                 "start_offset": 5,
                 "end_offset":   7,
                 "type":         "<ALPHANUM>",
                 "position":     2
              },
              {
                 "token":        "analyze",
                 "start_offset": 8,
                 "end_offset":   15,
                 "type":         "<ALPHANUM>",
                 "position":     3
              }
           ]
        }
        
        • token是一个实际被存储在索引中的词。position指明词在原文本中是第几个出现的。start_offset和end_offset表示词在原文本中占据的位置。

    映射

    1. 为了能够把日期字段处理成日期,把数字字段处理成数字,把字符串字段处理成全文本(Full-text)或精确的字符串值,Elasticsearch需要知道每个字段里面都包含了什么类型。这些类型和字段的信息存储(包含)在映射(mapping)中。
    2. 核心简单字段类型
    类型 表示的数据类型
    String string
    Whole number byte, short, integer, long
    Floating point float, double
    Boolean boolean
    Date date
    1. 当你索引一个包含新字段的文档——一个之前没有的字段——Elasticsearch将使用动态映射猜测字段类型,这类型来自于JSON的基本数据类型,使用以下规则:
    JSON type Field type
    Boolean: true or false "boolean"
    Whole number: 123 "long"
    Floating point: 123.45 "double"
    String, valid date: "2014-09-15" "date"
    String: "foo bar" "string"
    1. 查看映射

      • 我们可以使用_mapping后缀来查看Elasticsearch中的映射。在本章开始我们已经找到索引gb类型tweet中的映射:
      GET /gb/_mapping/tweet
      
      • 字段的映射(叫做属性(properties)),这些映射是Elasticsearch在创建索引时动态生成的:
          {
         "gb": {
            "mappings": {
               "tweet": {
                  "properties": {
                     "date": {
                        "type": "date",
                        "format": "strict_date_optional_time||epoch_millis"
                     },
                     "name": {
                        "type": "string"
                     },
                     "tweet": {
                        "type": "string"
                     },
                     "user_id": {
                        "type": "long"
                     }
                  }
               }
            }
         }
      }
      
      • ps:错误的映射,例如把age字段映射为string类型而不是integer类型,会造成查询结果混乱。
        要检查映射类型,而不是假设它是正确的!
    2. 自定义字段映射

      • 映射中最重要的字段参数是type
      {
          "number_of_clicks": {
              "type": "integer"
          }
      }
      
    3. index

      • index参数控制字符串以何种方式被索引。它包含以下三个值当中的一个
      解释
      analyzed 首先分析这个字符串,然后索引。换言之,以全文形式索引此字段。
      not_analyzed 索引这个字段,使之可以被搜索,但是索引内容和指定值一样。不分析此字段。
      no 不索引这个字段。这个字段不能为搜索到。
      • 如果我们想映射字段为确切值,我们需要设置它为not_analyzed:
      {
          "tag": {
              "type":     "string",
              "index":    "not_analyzed"
          }
      }
      
    4. 分析

      • 对于analyzed类型的字符串字段,使用analyzer参数来指定哪一种分析器将在搜索和索引的时候使用。默认的,Elasticsearch使用standard分析器,但是你可以通过指定一个内建的分析器来更改它,例如whitespace、simple或english。
      {
          "tweet": {
              "type":     "text",
              "analyzer": "english"
          }
      }
      
    5. 更新映射

      • 你可以在第一次创建索引的时候指定映射的类型。此外,你也可以晚些时候为新类型添加映射
      • ps:你可以向已有映射中增加字段,但你不能修改它。如果一个字段在映射中已经存在,这可能意味着那个字段的数据已经被索引。如果你改变了字段映射,那已经被索引的数据将错误并且不能被正确的搜索到。
      • 创建一个新索引,指定tweet字段的分析器为english:
      PUT /gb 
      {
        "mappings": {
          "tweet" : {
            "properties" : {
              "tweet" : {
                "type" :    "text",
                "analyzer": "english"
              },
              "date" : {
                "type" :   "date"
              },
              "name" : {
                "type" :   "text"
              },
              "user_id" : {
                "type" :   "long"
              }
            }
          }
        }
      }
      
      • 再后来,我们决定在tweet的映射中增加一个新的not_analyzed类型的文本字段,叫做tag,使用_mapping后缀:
      PUT /gb/_mapping/tweet
      {
        "properties" : {
          "tag" : {
            "type" :    "string",
            "index":    "not_analyzed"
          }
        }
      }
      

    版本问题

    1. 如果你发现报错
    #! Deprecation: Expected a boolean [true/false] for property [index] but got [not_analyzed]
    
    1. 原因:该版本以后index这个只能用true或者false了,如果想要不被分词就把数据类型设置为keyword,只能说优化了,使用更方便,更易理解了

    复合核心字段类型

    1. 多值字段

      • 我们可以索引一个标签数组来代替单一字符串:
      • { "tag": [ "search", "nosql" ]}
      • 对于数组不需要特殊的映射。任何一个字段可以包含零个、一个或多个值,同样对于全文字段将被分析并产生多个词。
      • 言外之意,这意味着数组中所有值必须为同一类型。你不能把日期和字符窜混合。如果你创建一个新字段,这个字段索引了一个数组,Elasticsearch将使用第一个值的类型来确定这个新字段的类型。
    2. 空字段

      • 数组可以是空的。这等价于有零个值。事实上,Lucene没法存放null值,所以一个null值的字段被认为是空字段。
      • 这四个字段将被识别为空字段而不被索引:
      "empty_string":             "",
      "null_value":               null,
      "empty_array":              [],
      "array_with_null_value":    [ null ]
      
    3. 多层对象

      • 内部对象(inner objects)经常用于在另一个对象中嵌入一个实体或对象。例如,做为在tweet文档中user_name和user_id的替代,我们可以这样写:
      {
          "tweet":            "Elasticsearch is very flexible",
          "user": {
              "id":           "@johnsmith",
              "gender":       "male",
              "age":          26,
              "name": {
                  "full":     "John Smith",
                  "first":    "John",
                  "last":     "Smith"
              }
          }
      }
      
    4. 内部对象的映射

      • Elasticsearch 会动态的检测新对象的字段,并且映射它们为 object 类型,将每个字段加到 properties 字段下
      {
        "gb": {
          "tweet": { //根对象
            "properties": {
              "tweet":            { "type": "string" },
              "user": { //内部对象
                "type":             "object",
                "properties": {
                  "id":           { "type": "string" },
                  "gender":       { "type": "string" },
                  "age":          { "type": "long"   },
                  "name":   { //内部对象
                    "type":         "object",
                    "properties": {
                      "full":     { "type": "string" },
                      "first":    { "type": "string" },
                      "last":     { "type": "string" }
                    }
                  }
                }
              }
            }
          }
        }
      }
      
    5. 内部对象是怎样被索引的

      • Lucene 并不了解内部对象。 一个 Lucene 文件包含一个键-值对应的扁平表单。 为了让 Elasticsearch 可以有效的索引内部对象,将文件转换为以下格式:
      {
          "tweet":            [elasticsearch, flexible, very],
          "user.id":          [@johnsmith],
          "user.gender":      [male],
          "user.age":         [26],
          "user.name.full":   [john, smith],
          "user.name.first":  [john],
          "user.name.last":   [smith]
      }
      
    6. 对象-数组

      • 内部对象数组
      {
          "followers": [
              { "age": 35, "name": "Mary White"},
              { "age": 26, "name": "Alex Jones"},
              { "age": 19, "name": "Lisa Smith"}
          ]
      }
      
      • 此文件会如我们以上所说的被扁平化,但其结果会像如此
      {
          "followers.age":    [19, 26, 35],
          "followers.name":   [alex, jones, lisa, smith, mary, white]
      }
      
      • {age: 35}与{name: Mary White}之间的关联会消失,因每个多值的栏位会变成一个值集合,而非有序的阵列。

    如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的推荐按钮。
    如果,您希望更容易地发现我的新博客,不妨点击一下【关注我】。

    我的写作热情也离不开您的肯定支持,感谢您的阅读,我是【老梁】!

  • 相关阅读:
    原型和原型链
    面向对象
    git在idea中的使用,如何构远程git方仓库
    java maven 安装
    Kafka消费者APi
    Kafka生产者APi
    kafka基本概念
    redis常用命令
    redis.conf配置文件参数说明
    Redis.RedisNativeClient的方法get_Db 没有实现
  • 原文地址:https://www.cnblogs.com/sky-chen/p/9962586.html
Copyright © 2020-2023  润新知