• HDU 6069


    Counting Divisors

    Problem Description
    In mathematics, the function d(n) denotes the number of divisors of positive integer n.

    For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.

    In this problem, given l,r and k, your task is to calculate the following thing :

    (i=lrd(ik))mod998244353

     
    Input
    The first line of the input contains an integer T(1T15), denoting the number of test cases.

    In each test case, there are 3 integers l,r,k(1lr1012,rl106,1k107).
     
    Output
    For each test case, print a single line containing an integer, denoting the answer.
     
    Sample Input
    3 1 5 1 1 10 2 1 100 3
     
    Sample Output
    10 48 2302
     
    这题实质上就是分解质因数,不过不能对每个数都分解一次,这样肯定超时。
    要用线性的方法求质因数。
    设i可以分解为a1,a2,a3,a4……am,则总数加上(a1*k+1)*(a2*k+1)*……(am*k+1)
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<cmath>
    #define ll long long
    using namespace std;
    #define ll long long
    const int mod=998244353;
    const int maxn=1000005;
    int prime[maxn];
    bool vis[maxn];
    int top;
    ll a[maxn];
    ll b[maxn];
    
    void pri()
    {
        top=0;
        memset(vis,0,sizeof vis);
        vis[1]=1;
        for(int i=2; i<maxn; i++)
        {
            if(!vis[i])
                prime[top++]=i;
            for(int j=0; j<top&&i*prime[j]<maxn; j++)
            {
                vis[i*prime[j]]=1;
                if(i%prime[j]==0)
                    break;
            }
        }
    }
    
    void fun(ll l,ll r,ll k)
    {
        for(ll i=l; i<=r; i++)
            b[i-l]=i;
        for(ll i=l; i<=r; i++)
            a[i-l]=1;
        for(ll i=0; i<top&&prime[i]<=sqrt(r); i++)
        {
            ll x=l/prime[i];
            if(x*prime[i]<l)
                x++;
            for(ll j=x; j*prime[i]<=r; j++)
            {
                ll s=0;
                while(b[prime[i]*j-l]%prime[i]==0)
                {
                    s++;
                    b[prime[i]*j-l]/=prime[i];
                }
                a[prime[i]*j-l]=a[prime[i]*j-l]*(s*k+1)%mod;
            }
        }
        for(ll i=l; i<=r; i++)
            if(b[i-l]>1)
                a[i-l]=a[i-l]*(k+1)%mod;
    }
    
    int main()
    {
        pri();
        int T;
        scanf("%d",&T);
        while(T--)
        {
            ll l,r;
            ll k;
            scanf("%lld%lld%lld",&l,&r,&k);
            ll sum=0;
            fun(l,r,k);
            for(ll i=l; i<=r; i++)
                sum=(sum+a[i-l])%mod;
            printf("%lld
    ",sum);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    NB-IoT成为3GPP后会有哪些优势
    NB-IOT覆盖范围有多大 NB-IOT的强覆盖是怎么实现的
    4G DTU无线数据透明传输终端
    NB-IoT DTU是什么 NB-IoT的优势有哪些
    4G DTU是什么 4G DTU的功能和特点
    LoRa技术的发展应用和LoRa应用设备
    4G DTU为什么要具有透传的功能
    跨链在SIPC.VIP上的使用流程
    SimpleChain 开发挑战赛邀你来报名啦
    SimpleChain区块链管理系统使用教程
  • 原文地址:https://www.cnblogs.com/siyecaodesushuo/p/7281244.html
Copyright © 2020-2023  润新知