本文《machine learning in action》学习笔记
chapter 2. Classifying with k Nearest Neighbors
the pros and cons of k-Nearest Neighbors:
pro: high accuracy, insensitive to outliers, no assumptions about data
cons: Computationally expensive, requires a lot of memory
works with : Numeric values, normal values
what’s the k meaning?
by giving a data set with label, it can partition into several piece. Given a new data, we compare it with each piece of existing data and look at the top k most similar piece of data. Here we use the distance to evaluate the similarity. Finally, we take a majority vote from the k most similar piece of data, the majority is the class we assign to the new data.
This is the meaning of k.
example of Movies classification by kNN
Background:
the review that giving a kiss or kicks to a movie seems to related different class movies. Usually, the romance movie always get much kiss while action movies get much kicks.
Question: While giving several movies with different kiss and kicks, can we train a model to classify a new movie?
General approach to kNN
1) collect data
2) prepare: algorithm format
3) analyze
4)Train :
5) Test: calculate the error
6) Use
after training the model and testing, if you find the model is good enough, it can be used to classify.
prepare: import data with python
To make the question much easier to understand, here we assign the data point (1,1.1) to class A, and (0,0.1) to class B. There are 4 points, two classes.
def createDataSet():
'''create data set according to the data for specific use'''
group = array([[1.0,1.1],[1.0,1.1],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
Putting the kNN classification algorithm into action
Procedure :
for every point in our dataset:
calculate the distance between inX and the current point
sort the distance in increasing order
take k items with lowest distances to inX
find the majority class among these items
return the majority class as our prediction for the class of the inX
python code
from numpy import *
import operator
def createDataSet():
'''create data set according to the data for specific use'''
group = array([[1.0,1.1],[1.0,1.1],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
def classify0(inX, dataSet, labels, k):
'''put the kNN classification algorithm into action'''
dataSetSize = dataSet.shape[0]
diffMax = tile(inX,(dataSetSize,1)) - dataSet
sqDiffMax = diffMax ** 2
sqDistances = sqDiffMax.sum(axis=1)
distances = sqDistances**0.5
# argsort 返回由大到小的索引值
sortedDistIndicies = distances.argsort()
classCount= {}
for i in range(k):
# 找到最大索引值对应数据的label
voteIlabel = labels[sortedDistIndicies[i]]
# returns a value for the given key
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
return sortedClassCount[0][0]
if __name__ == '__main__':
group,labels = createDataSet()
classResult = classify0([0, 0], group, labels, 3)
print(classResult)
Distance calculation
(1)Calculate the distance using the Euclidian distance between two vectors.
(2) Some function of Numpy that help to understand the code:
1) shape
numpy.ndarray.shape
The shape property is usually used to get the current shape of an array.
example:
>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0.]])
2) tile()
numpy.tile(A, reps)
Construct an array by repeating A the number of times given by reps.
exampe:
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
voting with lowest k dictionary
for i in range(k):
# 找到最大索引值对应数据的label
voteIlabel = labels[sortedDistIndicies[i]]
# returns a value for the given key
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
# 按照键值的大小排列
sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)
这里dictionary的get方法是这么理解的:
classCount是一个字典, classCount[voteIlabel] = ?表示给字典中的key赋值。
votellablel 是我们分的类别A,B
get()的语法:get(key, default=None)
这里classCount.get(voteIlabel,0) + 1 就是指获取key为voteIlabel的值,当key不存在时,建立一个key并且赋值为0,如果key存在则返回该key对应的值并加1.
这里要做的事情就是给每一个类投票,for-loop结束之后,可以得到一个字典
接下来就是要返回票数多的类别,用到了sort函数(我下面也有介绍这个函数)
classCount.items() 就是讲上面求到的字典转为元组
sort()的第二个参数表示要按照元组那个位置上的值排列。这里(‘B’,2)(‘A’,1)
我们想要的是类别A或者B,按照第二个数的大小排,所以key = operator.itemgetter(1),填1而不是0,填0就按照A,B顺序排。
按照高到低排序,最后返回第一个元组的第一个元素sortedClassCount[0][0]就是B.
(1) some function of numpy and python that can help to understand the code:
numpy.argsort(a, axis=-1, kind='quicksort', order=None)
Returns the indices that would sort an array.
Parameters:
a : array_like Array to sort.
axis : int or None, optional
Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional sorting algorithm.
order : str or list of str, optional
Returns:
index_array : ndarray, int
example
One dimensional array:
>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])
Two-dimensional array:
>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
[2, 2]])
>>> np.argsort(x, axis=0) # sorts along first axis (down)
array([[0, 1],
[1, 0]])
>>> np.argsort(x, axis=1) # sorts along last axis (across)
array([[0, 1],
[0, 1]])
Indices of the sorted elements of a N-dimensional array:
>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
>>> ind
(array([0, 1, 1, 0]), array([0, 0, 1, 1]))
>>> x[ind] # same as np.sort(x, axis=None)
array([0, 2, 2, 3])
Sorting with keys:
>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],
dtype=[('x', '<i4'), ('y', '<i4')])
>>> np.argsort(x, order=('x','y'))
array([1, 0])
>>> np.argsort(x, order=('y','x'))
array([0, 1])
2)
Python 3 - dictionary get() Method
Description
The method get() returns a value for the given key. If key is not available then returns default value None.
Example
#!/usr/bin/python3
dict = {'Name': 'Zara', 'Age': 27}
print ("Value : %s" % dict.get('Age'))
print ("Value : %s" % dict.get('Sex', "NA"))
Value : 27
Value : NA
3)
Axis is difficult to understand, you can refer this link:
Sort dictionary
sortedClassCount = sorted(classCount.iteritems(), key = operater.itemgetter(1), reverse = Ture)
return sortedClassCount[0][0]
1)
python sorted
The sorted() method sorts the elements of a given iterable in a specific order - Ascending or Descending.
The syntax of sorted() method is: sorted(iterable[, key][, reverse])
Sort the list using sorted() having a key function
# take second element for sort
def takeSecond(elem):
return elem[1]
# random list
random = [(2, 2), (3, 4), (4, 1), (1, 3)]
# sort list with key
sortedList = sorted(random, key=takeSecond)
# print list
print('Sorted list:', sortedList)
Sorted list: [(4, 1), (2, 2), (1, 3), (3, 4)]
operator.itemgetter
Return a callable object that fetches item from its operand using the operand’s getitem() method.
examle:
>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1,3,5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2,None))('ABCDEFG')
'CDEFG'
Example of using itemgetter() to retrieve specific fields from a tuple record:
>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> list(map(getcount, inventory))
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]