• octave之奇巧淫技向量化计算实现寻找样本点所属聚类下标


      前面有文章提到过,K-means算法,第一步骤是找出样本点的的所属聚类。下面用两种方式实现,一种是普通的循环,一种是完全向量化计算。

      假设 :

        X 是m×n样本矩阵,其每一行是一个样本,m表示样本数目,n表示特征数目;

        centroids是K×n矩阵,K表示聚类数目,n表示特征数目,每一行是一个聚类的中心。

        idx是m×1矩阵,idx(i) 表示第i个样本所属的聚类下标。(取值范围 1..K )

    半循环半向量化方式 实现:

      思想:循环遍历每一个样本点,计算每一个样本点距离K个聚类中心的值,并取最小值的那个聚类下标

    for i = 1 : size(X, 1)
    	dif = bsxfun(@minus, X(i, :), centroids);
    	[w, iw] = min(sum(dif .* dif, 2));
    	idx(i, :) = iw;
    endfor

      

    完全向量化式 实现:

      思想: 首先,构造两个m×n×K矩阵, 第一个矩阵为样本点的值,第二个矩阵为聚类中心值;

          然后,计算样本点距离聚类中心的值,并找到最小值的那个聚类下标。

    X_ext = bsxfun(@plus, X, zeros([size(X), K]));
    centroids_ext = permute(centroids, [3, 2, 1]);
    
    dif_ext = bsxfun(@minus, X_ext, centroids_ext);
    
    [~, ix] = min(sum(dif_ext .* dif_ext, 2), [], 3);
    
    idx = ix;
    

      

      跟上面那个半循环半向量的实现方式相比,这个完全向量化代码即很难看懂,也没有更简洁。速度效率也不知道也不会更快。奇巧淫技。

  • 相关阅读:
    博客写作技巧及规范
    2020年中总结
    运维笔记(一)——磁盘挂载与逻辑卷扩容
    mysql设计与优化(二)——配置主从
    mysql设计与优化(一)
    日志处理(一)
    坑爹问题—360自动填充账户密码
    mysql设计与优化
    java并发-ConcurrentMap
    FastDfs配置nginx
  • 原文地址:https://www.cnblogs.com/simplelovecs/p/5137796.html
Copyright © 2020-2023  润新知