• 玲珑学院OJ 1023


    分析:a^b+2(a&b)=a+b  so->a^(-b)+2(a&(-b))=a-b

            然后树状数组分类讨论即可

    链接:http://www.ifrog.cc/acm/problem/1023

    吐槽:这个题本来是mod(2^40),明显要用快速乘啊,但是用了以后狂T,不用反而过了,不懂出题人

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    #include <string>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    typedef long long LL;
    const int N = 1e5+5;
    const LL mod = (1ll<<40);
    int T,n,m,a[N],b[N],p[N],cnt,kase;
    LL c[4][N],sum[4];
    inline void init()
    {
        for(int i=0; i<4; ++i)
            for(int j=0;j<=cnt;++j)c[i][j]=0;
        sum[0]=sum[1]=sum[2]=sum[3]=0;
    }
    inline void up(LL &x,LL t)
    {
        x+=t;
        if(x>=mod)x-=mod;
    }
    inline void add(int pos,int x,LL t)
    {
        for(int i=x; i<=cnt; i+=i&(-i))up(c[pos][i],t);
    }
    inline LL ask(int pos,int x)
    {
        LL ret=0;
        for(int i=x; i; i-=i&(-i))up(ret,c[pos][i]);
        return ret;
    }
    LL ksc(LL x,LL y)
    {
        LL ret=0;
        while(y)
        {
            if(y&1)up(ret,x);
            y>>=1;
            up(x,x);
        }
        return ret;
    }
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1; i<=n; ++i)scanf("%d",&a[i]);
            for(int i=1; i<=m; ++i)scanf("%d",&b[i]),p[i]=b[i];
            sort(p+1,p+1+m);
            cnt = unique(p+1,p+1+m)-p-1;
            int ptr=1;
            LL ret=0;
            init();
            for(int i=1; i<=n; ++i)
            {
                int pos;
                for(; ptr<=m&&ptr<i; ++ptr)
                {
                    pos = lower_bound(p+1,p+1+cnt,b[ptr])-p;
                    add(0,pos,1);++sum[0];
                    add(1,pos,ptr);up(sum[1],ptr);
                    add(2,pos,b[ptr]);up(sum[2],b[ptr]);
                    add(3,pos,1ll*b[ptr]*ptr%mod);up(sum[3],1ll*b[ptr]*ptr%mod);
                }
                /**j<i,b[j]<a[i]**/
                pos = lower_bound(p+1,p+1+cnt,a[i])-p;
                --pos;
                LL tmp =ask(0,pos);
                if(tmp!=0)
                {
                    tmp = 1ll*i*a[i]%mod*tmp%mod;up(ret,tmp);
                    //up(ret,ksc(1ll*i*a[i]%mod,tmp));
                    tmp = -(ask(1,pos)*a[i]%mod);
                    //tmp = -ksc(ask(1,pos),a[i]);
                    up(tmp,mod);
                    up(ret,tmp);
                    tmp = -(ask(2,pos)*i%mod);
                    //tmp = -ksc(ask(2,pos),i);
                    up(tmp,mod);
                    up(ret,tmp);
                    up(ret,ask(3,pos));
                }
                /*********/
                /**j<i,b[j]>a[i]**/
                pos = upper_bound(p+1,p+1+cnt,a[i])-p;
                if(pos==cnt+1)continue;
                --pos;
                tmp = sum[0]-ask(0,pos);
                if(tmp==0)continue;
                tmp = -(1ll*i*a[i]%mod*tmp%mod);
                //tmp= -ksc(1ll*i*a[i]%mod,tmp);
                up(tmp,mod);
                up(ret,tmp);
                tmp = (sum[1]-ask(1,pos)+mod)%mod;
                tmp = tmp*a[i]%mod;
                //tmp = ksc(tmp,a[i]);
                up(ret,tmp);
                tmp = (sum[2]-ask(2,pos)+mod)%mod;
                tmp = tmp*i%mod;
                //tmp = ksc(tmp,i);
                up(ret,tmp);
                tmp = (sum[3]-ask(3,pos)+mod)%mod;
                tmp = (mod-tmp)%mod;
                up(ret,tmp);
                /*********/
            }
            init();
            ptr=m;
            for(int i=n; i; --i)
            {
                int pos;
                for(; ptr>i&&ptr; --ptr)
                {
                    pos = lower_bound(p+1,p+1+cnt,b[ptr])-p;
                    add(0,pos,1);++sum[0];
                    add(1,pos,ptr);up(sum[1],ptr);
                    add(2,pos,b[ptr]);up(sum[2],b[ptr]);
                    add(3,pos,1ll*b[ptr]*ptr%mod);up(sum[3],1ll*b[ptr]*ptr%mod);
                }
                /**j>i,b[j]>a[i]**/
                pos = upper_bound(p+1,p+1+cnt,a[i])-p;
                --pos;
                if(pos!=cnt)
                {
                    LL tmp = sum[0]-ask(0,pos);
                    if(tmp!=0)
                    {
                        tmp = 1ll*i*a[i]%mod*tmp%mod;up(ret,tmp);
                        //up(ret,ksc(1ll*i*a[i]%mod,tmp));
                        tmp = (sum[1]-ask(1,pos)+mod)%mod;
                        tmp = -(tmp*a[i]%mod);
                        //tmp = -ksc(tmp,a[i]);
                        up(tmp,mod);
                        up(ret,tmp);
                        tmp = (sum[2]-ask(2,pos)+mod)%mod;
                        tmp = -(tmp*i%mod);
                        //tmp = -ksc(tmp,i);
                        up(tmp,mod);
                        up(ret,tmp);
                        tmp = (sum[3]-ask(3,pos)+mod)%mod;
                        up(ret,tmp);
                    }
                }
                /*********/
                /**j>i,b[j]<a[i]**/
                pos = lower_bound(p+1,p+1+cnt,a[i])-p;
                --pos;
                LL tmp = ask(0,pos);
                if(tmp==0)continue;
                tmp =-(1ll*i*a[i]%mod*tmp%mod);
                //tmp= -ksc(1ll*i*a[i]%mod,tmp);
                up(tmp,mod);
                up(ret,tmp);
                tmp = ask(1,pos);
                tmp = tmp*a[i]%mod;
                //tmp = ksc(tmp,a[i]);
                up(ret,tmp);
                tmp = ask(2,pos);
                tmp = tmp*i%mod;
                //tmp = ksc(tmp,i);
                up(ret,tmp);
                tmp = ask(3,pos);
                tmp = (mod-tmp)%mod;
                up(ret,tmp);
                /*********/
            }
            printf("Case #%d: %lld
    ",++kase,ret);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    eclipse中Preferences的一些设置
    eclipse中文乱码问题解决方案
    classpath、path、JAVA_HOME的作用
    java中抽象类与接口中方法访问修饰符问题 (
    Tomcat配置
    编译型语言和解释型语言
    强类型语言和弱类型语言
    javascript生成指定范围的随机整数
    java中int和Integer的区别
    红黑树入门
  • 原文地址:https://www.cnblogs.com/shuguangzw/p/5852793.html
Copyright © 2020-2023  润新知