• MNIST机器学习进阶


    # -*- coding: utf-8 -*-
    """
    Created on Wed Oct 17 08:49:28 2018

    @author: Administrator
    """
    import tensorflow as tf
    "引入input_data.py,注:Python文件必须与input_data.py在同一文件夹下"
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('./input_data', one_hot=True, validation_size=100)
    sess = tf.InteractiveSession()
    x = tf.placeholder("float",shape=[None,784])
    y_ = tf.placeholder("float",shape=[None,10])
    "定义权重W和偏置b"
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    "变量在session中初始化"
    sess.run(tf.initialize_all_variables())
    "权重初始化"

    def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

    def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

    "卷积与池化"
    def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

    def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
    strides=[1, 2, 2, 1], padding='SAME')
    "第一层卷积"
    "前两个维度是patch的大小,接着是输入的通道数目,最后是输出的通道数目。"
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1,28,28,1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    "第二层卷积"
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])

    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    "密集连接层"
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    "在输出层之前加入dropout"
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    "添加softmax层"
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    "训练和评估模型"
    cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    sess.run(tf.initialize_all_variables())
    for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
    x:batch[0], y_: batch[1], keep_prob: 1.0})
    print ("step %d, training accuracy %g"%(i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    print ("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

  • 相关阅读:
    Python开发入门与实战3-Django动态页面
    Python开发入门与实战2-第一个Django项目
    Python开发入门与实战1-开发环境
    牛客网剑指offer第12题——数值的整数次方
    再叙快速排序
    牛客网剑指offer第29题——最小的k个数
    牛客网剑指offer第59题——按之字形顺序打印二叉树
    牛客网剑指offer第33题——第N个丑数
    各种特征距离的计算方法及应用
    牛客网剑指offer第24题——二叉树中和为某一值的路径
  • 原文地址:https://www.cnblogs.com/shouhutian/p/9802429.html
Copyright © 2020-2023  润新知