• 【转】完美洗牌算法


    转自:https://yq.aliyun.com/articles/3575

    题目

    有个长度为2n的数组{a1,a2,a3,…,an,b1,b2,b3,…,bn},希望排序后{a1,b1,a2,b2,….,an,bn},请考虑有无时间复杂度o(n),空间复杂度0(1)的解法。

    来源

    2013年UC的校招笔试题

    思路一

    第①步、确定b1的位置,即让b1跟它前面的a2,a3,a4交换:

    a1,b1,a2,a3,a4,b2,b3,b4
    

    第②步、接着确定b2的位置,即让b2跟它前面的a3,a4交换:

    a1,b1,a2,b2,a3,a4,b3,b4
    

    第③步、b3跟它前面的a4交换位置:

    a1,b1,a2,b2,a3,b3,a4,b4
    

    b4已在最后的位置,不需要再交换。如此,经过上述3个步骤后,得到我们最后想要的序列。但此方法的时间复杂度为O(n^2)

    代码一

     1 /*---------------------------------------------
     2 *   日期:2015-02-13
     3 *   作者:SJF0115
     4 *   题目: 完美洗牌算法
     5 *   来源:2013年UC的校招笔试题
     6 *   博客:
     7 -----------------------------------------------*/
     8 #include <iostream>
     9 using namespace std;
    10 
    11 class Solution {
    12 public:
    13     void PerfectShuffle(int *A,int n){
    14         if(n <= 1){
    15             return;
    16         }//if
    17         //
    18         int size = 2*n;
    19         int index,count;
    20         for(int i = n;i < size;++i){
    21             // 交换个数
    22             count = n - (i - n) - 1;
    23             // 待交换
    24             index = i;
    25             for(int j = 1;j <= count;++j){
    26                 swap(A[index],A[i-j]);
    27                 index = i - j;
    28             }//for
    29         }//for
    30     }
    31 };
    32 
    33 
    34 int main() {
    35     Solution solution;
    36     int A[] = {1,2,3,4,5,6,7,8};
    37     solution.PerfectShuffle(A,4);
    38     for(int i = 0;i < 8;++i){
    39         cout<<A[i]<<" ";
    40     }//for
    41     cout<<endl;
    42 }

    思路二

    我们每次让序列中最中间的元素进行两两交换。还是上面的例子:

    a1,a2,a3,a4,b1,b2,b3,b4
    

    第①步:交换最中间的两个元素a4,b1:

    a1,a2,a3,b1,a4,b2,b3,b4
    

    第②步:最中间的两对元素各自交换:

    a1,a2,b1,a3,b2,a4,b3,b4
    

    第③步:交换最中间的三对元素:

    a1,b1,a2,b2,a3,b3,a4,b4
    

    此思路同上述思路一样,时间复杂度依然为O(n^2)。仍然但不到题目要求。

    代码二

     1 /*---------------------------------------------
     2 *   日期:2015-02-13
     3 *   作者:SJF0115
     4 *   题目: 完美洗牌算法
     5 *   来源:2013年UC的校招笔试题
     6 *   博客:
     7 -----------------------------------------------*/
     8 #include <iostream>
     9 using namespace std;
    10 
    11 class Solution {
    12 public:
    13     void PerfectShuffle(int *A,int n){
    14         if(n <= 1){
    15             return;
    16         }//if
    17         //
    18         int left = n - 1,right = n;
    19         // 交换次数
    20         for(int i = 0;i < n-1;++i){
    21             for(int j = left;j < right;j+=2){
    22                 swap(A[j],A[j+1]);
    23             }//for
    24             --left;
    25             ++right;
    26         }//for
    27     }
    28 };
    29 
    30 
    31 int main() {
    32     Solution solution;
    33     int A[] = {1,2,3,4,5,6,7,8,9,10};
    34     solution.PerfectShuffle(A,5);
    35     for(int i = 0;i < 10;++i){
    36         cout<<A[i]<<" ";
    37     }//for
    38     cout<<endl;
    39 }

    思路三(完美洗牌算法)

    玩过扑克牌的朋友都知道,在一局完了之后洗牌,洗牌人会习惯性的把整副牌大致分为两半,两手各拿一半对着对着交叉洗牌。

    2004年,microsoft的Peiyush Jain在他发表一篇名为:“A Simple In-Place Algorithm for In-Shuffle”的论文中提出了完美洗牌算法。

    什么是完美洗牌问题呢?即给定一个数组a1,a2,a3,…an,b1,b2,b3..bn,最终把它置换成b1,a1,b2,a2,…bn,an。这个完美洗牌问题本质上与本题完全一致,只要在完美洗牌问题的基础上对它最后的序列swap两两相邻元素即可。

    (1)对原始位置的变化做如下分析:

    (2)依次考察每个位置的变化规律: 
    a1:1 -> 2 
    a2:2 -> 4 
    a3:3 -> 6 
    a4:4 -> 8 
    b1:5 -> 1 
    b2:6 -> 3 
    b3:7 -> 5 
    b4:8 -> 7

    对于原数组位置i的元素,新位置是(2*i)%(2n+1),注意,这里用2n表示原数组的长度。后面依然使用该表述方式。有了该表达式,困难的不是寻找元素在新数组中的位置,而是为该元素“腾位置”。如果使用暂存的办法,空间复杂度必然要达到O(N),因此,需要换个思路。

    (3)我们这么思考:a1从位置1移动到位置2,那么,位置2上的元素a2变化到了哪里呢?继续这个线索,我们得到一个“封闭”的环:

    1 -> 2 -> 4 -> 8 -> 7 -> 5 -> 1
    

    沿着这个环,可以把a1、a2、a4、b4、b3、b1这6个元素依次移动到最终位置;显然,因为每次只移动一个元素,代码实现时,只使用1个临时空间即可完成。(即:a=t;t=b;b=a) 
    此外,该变化的另外一个环是:

    3 -> 6 -> 3
    

    沿着这个环,可以把a3、b2这2个元素依次移动到最终位置。

     1 // 走圈算法
     2     void CycleLeader(int *a,int start, int n) {
     3         int pre = a[start];
     4         // 2 * i % (2 * n + 1)
     5         int mod = 2 * n + 1;
     6         // 实际位置
     7         int next = start * 2 % mod;
     8         // 按环移动位置
     9         while(next != start){
    10             swap(pre,a[next]);
    11             next = 2 * next % mod;
    12         }//while
    13         a[start] = pre;
    14     }

    4)上述过程可以通过若干的“环”的方式完整元素的移动,这是巧合吗?事实上,该问题的研究成果已经由Peiyush Jain在10年前公开发表在A Simple In-Place Algorithm for In-Shuffle, Microsoft, 2004中。原始论文直接使用了一个结论,这里不再证明:对于2*n =(3^k-1)这种长度的数组,恰好只有k个环,且每个环的起始位置分别是1,3,9,…3^(k-1)。 
    对于上面的例子,长度为8,是3^2-1,因此,只有2个环。环的起始位置分别是1和3。

    (5)至此,完美洗牌算法的“主体工程”已经完工,只存在一个“小”问题:如果数组长度不是(3^k-1)呢?

    若2n!=(3^k-1),则总可以找到最大的整数m,使得m< n,并且2m=(3^k-1)。

    对于长度为2m的数组,调用(3)和(4)中的方法整理元素,剩余的2(n-m)长度,递归调用(5)即可。

    (6)需要交换一部分数组元素

     

    (下面使用[a,b]表示从a到b的一段子数组,包括端点) 
    ①图中斜线阴影部分的子数组[1,m]应该和[n + 1,n + m]组成一个数组,调用(3)和(4)中的算法; 
    ②数组[m+1,m+n]循环左移n-m次即可。(循环位移是存在空间复杂度为O(1),时间复杂度为O(n)的算法)

    (7)原始问题要输出a1,b1,a2,b2……an,bn,而完美洗牌却输出的是b1,a1,b2,a2,……bn,an。解决办法非常简单:忽略原数组中的a1和bn,对于a2,a3,……an,b1,b2,……bn-1调用完美洗牌算法,即为结论。

    举个例子: n = 6 
    a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6

    循环左移

    介绍一下时间复杂度为O(n),空间复杂度为O(1)的循环移位操作。 
    思路: 
    假设循环左移m位。把数组分成两段,第一段为前m个元素,第二段为剩余元素。把第一段和第二段先各自翻转一下,再将整体翻转下。

     1     // 翻转 start 开始位置 end 结束位置
     2     void Reverse(int *a,int start,int end){
     3         while(start < end){
     4             swap(a[start],a[end]);
     5             ++start;
     6             --end;
     7         }//while
     8     }
     9     // 循环左移m位 n数组长度 下标从1开始
    10     void LeftRotate(int *a,int m,int n){
    11         // 翻转前m位
    12         Reverse(a,1,m);
    13         // 翻转剩余元素
    14         Reverse(a,m+1,n);
    15         // 整体翻转
    16         Reverse(a,1,n);
    17     }

    代码:

     1 /*---------------------------------------------
     2 *   日期:2015-02-13
     3 *   作者:SJF0115
     4 *   题目: 完美洗牌算法
     5 *   来源:2013年UC的校招笔试题
     6 *   博客:
     7 -----------------------------------------------*/
     8 #include <iostream>
     9 using namespace std;
    10 
    11 class Solution {
    12 public:
    13     // 完美洗牌算法
    14     void PerfectShuffle(int *a,int n){
    15         while(n >= 1){
    16             // 计算环的个数
    17             int k = 0;
    18             // 3^1
    19             int r = 3;
    20             // 2 * m  = 3^k - 1
    21             // m <= n  ->  2 * m <= 2 * n  -> 3^k - 1 <= 2 * n
    22             // 寻找最大的k使得3^k - 1 <= 2*n
    23             while(r - 1 <= 2*n){
    24                 r *= 3;
    25                 ++k;
    26             }//while
    27             int m = (r / 3 - 1) / 2;
    28             // 循环左移n-m位
    29             LeftRotate(a+m,n-m,n);
    30             // k个环 环起始位置start: 1,3...3^(k-1)
    31             for(int i = 0,start = 1;i < k;++i,start *= 3) {
    32                 // 走圈
    33                 CycleLeader(a,start,m);
    34             }//for
    35             a += 2*m;
    36             n -= m;
    37         }
    38     }
    39 private:
    40     // 翻转 start 开始位置 end 结束位置
    41     void Reverse(int *a,int start,int end){
    42         while(start < end){
    43             swap(a[start],a[end]);
    44             ++start;
    45             --end;
    46         }//while
    47     }
    48     // 循环右移m位 n数组长度 下标从1开始
    49     void LeftRotate(int *a,int m,int n){
    50         // 翻转前m位
    51         Reverse(a,1,m);
    52         // 翻转剩余元素
    53         Reverse(a,m+1,n);
    54         // 整体翻转
    55         Reverse(a,1,n);
    56     }
    57     // 走圈算法
    58     void CycleLeader(int *a,int start, int n) {
    59         int pre = a[start];
    60         // 2 * i % (2 * n + 1)
    61         int mod = 2 * n + 1;
    62         // 实际位置
    63         int next = start * 2 % mod;
    64         // 按环移动位置
    65         while(next != start){
    66             swap(pre,a[next]);
    67             next = 2 * next % mod;
    68         }//while
    69         a[start] = pre;
    70     }
    71 };
    72 
    73 
    74 int main() {
    75     Solution solution;
    76     int A[] = {0,1,2,3,4,5,6,7,8,9,10,11,12};
    77     solution.PerfectShuffle(A,6);
    78     for(int i = 1;i <= 12;++i){
    79         cout<<A[i]<<" ";
    80     }//for
    81     cout<<endl;
    82 }

    拓展一

    问题:如果输入是a1,a2,……an, b1,b2,……bn, c1,c2,……cn,要求输出是c1,b1,a1,c2,b2,a2,……cn,bn,an怎么办? 
    分析: 这个问题本质上其实还是上面的完美洗牌算法一样,我们一样还是分析其规律。

     

    对于原数组位置i的元素,新位置是(3*i)%(3n+1)

    图中所说的步骤三四五和上面的三四五大体一样,只是细节不太一样,看图就明白了。

    引用: 
    http://blog.csdn.net/v_july_v/article/details/10212493 
    http://ask.julyedu.com/question/33 
    http://blog.csdn.net/caopengcs/article/details/10521603 
    http://cs.stackexchange.com/questions/332/in-place-algorithm-for-interleaving-an-array/400#400

    
    
  • 相关阅读:
    机器学习模型之逻辑回归
    机器学习模型之决策树
    机器学习模型之朴素贝叶斯
    机器学习模型之KNN算法
    Gradle系列之构建脚本基础
    Gradle系列之Groovy基础篇
    Gradle系列之初识Gradle
    Bitmap之内存缓存和磁盘缓存详解
    Bitmap之位图采样和内存计算详解
    WebView中Java与JavaScript的交互
  • 原文地址:https://www.cnblogs.com/shizhh/p/5880778.html
Copyright © 2020-2023  润新知