• 梯度下降法和牛顿法比较(转)


    机器学习中梯度下降法和牛顿法的比较

    机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解。在逻辑斯蒂回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法。由于两种方法有些相似,我特地拿来简单地对比一下。下面的内容需要读者之前熟悉两种算法

    梯度下降法

    梯度下降法用来求解目标函数的极值。这个极值是给定模型给定数据之后在参数空间中搜索找到的。迭代过程为:

    这里写图片描述

    可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha。梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终到达坡底。为了更形象地理解,也为了和牛顿法比较,这里我用一个二维图来表示:

    这里写图片描述

    懒得画图了直接用这个展示一下。在二维图中,梯度就相当于凸函数切线的斜率,横坐标就是每次迭代的参数,纵坐标是目标函数的取值。每次迭代的过程是这样:

    1. 首先计算目标函数在当前参数值的斜率(梯度),然后乘以步长因子后带入更新公式,如图点所在位置(极值点右边),此时斜率为正,那么更新参数后参数减小,更接近极小值对应的参数。
    2. 如果更新参数后,当前参数值仍然在极值点右边,那么继续上面更新,效果一样。
    3. 如果更新参数后,当前参数值到了极值点的左边,然后计算斜率会发现是负的,这样经过再一次更新后就会又向着极值点的方向更新。

    根据这个过程我们发现,每一步走的距离在极值点附近非常重要,如果走的步子过大,容易在极值点附近震荡而无法收敛。解决办法:将alpha设定为随着迭代次数而不断减小的变量,但是也不能完全减为零。

    牛顿法

    首先得明确,牛顿法是为了求解函数值为零的时候变量的取值问题的,具体地,当要求解 f(θ)=0时,如果 f可导,那么可以通过迭代公式

    这里写图片描述

    来迭代求得最小值。通过一组图来说明这个过程。

    这里写图片描述

          (注意,这个图是求函数值为零的步骤,即在最优化里边相当于求的是一阶导数的那个函数为零的点)

    当应用于求解最大似然估计的值时,变成ℓ′(θ)=0的问题。这个与梯度下降不同,梯度下降的目的是直接求解目标函数极小值,而牛顿法则变相地通过求解目标函数一阶导为零的参数值,进而求得目标函数最小值。那么迭代公式写作:

    这里写图片描述

    当θ是向量时,牛顿法可以使用下面式子表示:

    这里写图片描述

    其中H叫做海森矩阵,其实就是目标函数对参数θ的二阶导数。

    通过比较牛顿法和梯度下降法的迭代公式,可以发现两者及其相似。海森矩阵的逆就好比梯度下降法的学习率参数alpha。牛顿法收敛速度相比梯度下降法很快,而且由于海森矩阵的的逆在迭代中不断减小,起到逐渐缩小步长的效果。

    牛顿法的缺点就是计算海森矩阵的逆比较困难,消耗时间和计算资源。因此有了拟牛顿法。

     
    转自:http://blog.csdn.net/liuheng0111/article/details/52518690
  • 相关阅读:
    关于无法使用xx-pc附加到应用程序iisexpress.exe
    iis 7.5 0x80004005 静态文件 html、js、css 500错误
    递归删除指定目录下面的所有文件夹和文件
    http请求相关
    常用分页写法
    获取与Url链接相关的信息
    解决iis7 0x80070002 错误代码问题
    实现Cookie跨域共享
    文本框值改变事件
    动态加载、移除、替换JS和CSS
  • 原文地址:https://www.cnblogs.com/shixisheng/p/7412943.html
Copyright © 2020-2023  润新知