• 关于算法的时间复杂度O(f(n))


    (一)算法时间复杂度定义:
      在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称时间复杂度。其中f(n)是问题规模n的某个函数。

    (二)分析一个算法的时间复杂度(推导大O阶):

    1.用常数1取代运行时间中的所有加法常数。

    2.在修改后的运行次数函数中,只保留最高阶项。

    3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

    得到的结果就是大O阶。

     (1)常数阶,大O阶记作O(1)。

    1 int sum=0,n=100;   //执行一次
    2 sum=(1+n)*n/2       //执行一次
    3 printf("%d",sum);    //执行一次

    这个算法运行次数函数是f(n)=3,该函数无最高阶项,所以记作O(1),而不是O(3)。

    (2)线性阶,分析循环结构的运行情况。

    (3)对数阶

    1 int count=1;
    2 while (count<n)
    3 {
    4   count=count*2;  
    5 }

    由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2的n次方等于n,得到x=log2 n。所以这个循环时间复杂度O(logn)。

    (4)平方阶

    1 int i,j;
    2 for(i=0;i<n;i++)
    3 {
    4   for(j=i;j<n;j++)
    5   /*时间复杂度为O(1)的程序步骤序列*/        
    6 }

    由于当i=0时,内循环执行了n次,当i=1时,执行了n-1次,……当i=n-1次,执行了1次。所以总的执行次数为:

    n+(n-1)+(n-2)+……+1=(n^2)/2+n/2

    根据推导大O阶的方法,第一条,没有加法常数不予考虑。第二条,只保留最高项,因此保留(n^2)/2;第三条去除这个项相乘的常数,即1/2,最终这段代码的时间复杂度为O(n^2)。

    我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

    此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

    “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

    这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

    O(1)

    Temp=i;i=j;j=temp;                    

    以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

    O(n^2)

    2.1. 交换i和j的内容
         sum=0;                 (一次)
         for(i=1;i<=n;i++)       (n次 )
            for(j=1;j<=n;j++) (n^2次 )
             sum++;       (n^2次 )
    解:T(n)=2n^2+n+1 =O(n^2)

    2.2.   
        for (i=1;i<n;i++)
        {
            y=y+1;         ①   
            for (j=0;j<=(2*n);j++)    
               x++;        ②      
        }         
    解: 语句1的频度是n-1
              语句2的频度是(n-1)*(2n+1)=2n^2-n-1
              f(n)=2n^2-n-1+(n-1)=2n^2-2
              该程序的时间复杂度T(n)=O(n^2).         

    O(n)      
                                                          
    2.3.
        a=0;
        b=1;                      ①
        for (i=1;i<=n;i++) ②
        {  
           s=a+b;    ③
           b=a;     ④  
           a=s;     ⑤
        }
    解:语句1的频度:2,        
               语句2的频度: n,        
              语句3的频度: n-1,        
              语句4的频度:n-1,    
              语句5的频度:n-1,                                  
              T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                     
    O(log2n )

    2.4.
         i=1;       ①
        while (i<=n)
           i=i*2; ②
    解: 语句1的频度是1,  
              设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    
              取最大值f(n)= log2n,
              T(n)=O(log2n )

    O(n^3)

    2.5.
        for(i=0;i<n;i++)
        {  
           for(j=0;j<i;j++)  
           {
              for(k=0;k<j;k++)
                 x=x+2;  
           }
        }
    解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
                                      

    我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
    下面是一些常用的记法:

    访问数组中的元素是常数时间操作,或说O(1)操作。

    一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。

    用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
    指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

  • 相关阅读:
    python中的归并排序
    使用委派取代继承
    ffmpeg 2.3版本号, 关于ffplay音视频同步的分析
    Java学习之路(转)
    怎样通过terminal得到AWS EC2 instance的ip
    让面试官对你“一见钟情”
    Html5 中获取镜像图像
    架构师速成6.3-设计开发思路
    【转】Android的权限permission
    【转】 Android 基于google Zxing实现对手机中的二维码进行扫描--不错
  • 原文地址:https://www.cnblogs.com/shide/p/4267331.html
Copyright © 2020-2023  润新知