• Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理)


     

    Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理)

    http://xiguada.org/spark-shuffle-direct-buffer-oom/

    问题描述

    Spark-1.6.0已经在一月份release,为了验证一下它的性能,我使用了一些大的SQL验证其性能,其中部分SQL出现了Shuffle失败问题,详细的堆栈信息如下所示:

    16/02/17 15:36:36 WARN server.TransportChannelHandler: Exception in connection from /10.196.134.220:7337

    java.lang.OutOfMemoryError: Direct buffer memory

        at java.nio.Bits.reserveMemory(Bits.java:658)

        at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123)

        at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306)

        at io.netty.buffer.PoolArena$DirectArena.newChunk(PoolArena.java:645)

        at io.netty.buffer.PoolArena.allocateNormal(PoolArena.java:228)

        at io.netty.buffer.PoolArena.allocate(PoolArena.java:212)

        at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)

        at io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:271)

        at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:155)

        at io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:146)

        at io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:107)

        at io.netty.channel.AdaptiveRecvByteBufAllocator$HandleImpl.allocate(AdaptiveRecvByteBufAllocator.java:104)

        at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:117)

        at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)

        at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)

        at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)

        at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)

        at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)

        at java.lang.Thread.run(Thread.java:744)

     

    从失败信息可以看出,是堆外内存溢出问题,为什么会出现堆外内存溢出呢?

      Sparkshuffle部分使用了netty框架进行网络传输,但netty会申请堆外内存缓存(PooledByteBufAllocator ,AbstractByteBufAllocator);Shuffle时,每个Reduce都需要获取每个map对应的输出,当一个reduce需要获取的一个map数据比较大(比如1G),这时候就会申请一个1G的堆外内存,而堆外内存是有限制的,这时候就出现了堆外内存溢出。

    Shuffle不使用堆外内存

    Executor增加配置-Dio.netty.noUnsafe=true,就可以让shuffle不使用堆外内存,但相同的作业还是出现了OOM,这种方式没办法解决问题。

    java.lang.OutOfMemoryError: Java heap space

            at io.netty.buffer.PoolArena$HeapArena.newUnpooledChunk(PoolArena.java:607)

            at io.netty.buffer.PoolArena.allocateHuge(PoolArena.java:237)

            at io.netty.buffer.PoolArena.allocate(PoolArena.java:215)

            at io.netty.buffer.PoolArena.allocate(PoolArena.java:132)

            at io.netty.buffer.PooledByteBufAllocator.newHeapBuffer(PooledByteBufAllocator.java:256)

            at io.netty.buffer.AbstractByteBufAllocator.heapBuffer(AbstractByteBufAllocator.java:136)

            at io.netty.buffer.AbstractByteBufAllocator.heapBuffer(AbstractByteBufAllocator.java:127)

            at io.netty.buffer.CompositeByteBuf.allocBuffer(CompositeByteBuf.java:1347)

            at io.netty.buffer.CompositeByteBuf.consolidateIfNeeded(CompositeByteBuf.java:276)

            at io.netty.buffer.CompositeByteBuf.addComponent(CompositeByteBuf.java:116)

            at org.apache.spark.network.util.TransportFrameDecoder.decodeNext(TransportFrameDecoder.java:148)

            at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:82)

            at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)

            at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)

            at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)

            at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)

            at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)

            at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)

            at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)

     

     

    当数据量大时能否直接写磁盘

    MapReduceShuffle数据量大时,会把Shuffle数据写到磁盘。

     

    Spark Shuffle通信机制

     

     

     

    上图显示了Shuffle的通信原理。

    服务端会启动Shuffle_Service

    1)客户端代码调用堆栈

    BlockStoreShuffleReader.read

    ShuffleBlockFetcherIterator.sendRequest

    ExternalShuffleClient.fetchBlocks

    OneForOneBlockFetcher.start

    TransportClient.sendRpc

    发送RpcRequest(OpenBlocks)信息

    2)服务端代码调用堆栈

    TransportRequestHandler.processRpcRequest

    ExternalShuffleBlockHandler.receive

    ExternalShuffleBlockHandler.handleMessage

    ExternalShuffleBlockResolver.getBlockData(shuffle_ShuffleId_MapId_ReduceId)

    ExternalShuffleBlockResolver.getSortBasedShuffleBlockData

    FileSegmentManagedBuffer

    handleMessage会把所需的appid的一个executor需要被fetchblock全部封装成List<ManagedBuffer>,然后注册为一个Stream,然后把streamIdblockid的个数返回给客户端,最后返回给客户端的信息为RpcResponse(StreamHandle(streamId, msg.blockIds.length))

    (3)客户端

    客户端接收到RpcResponse后,会为每个blockid调用:

    TransportClient.fetchChunk

    Send ChunkFetchRequest(StreamChunkId(streamId, chunkIndex))

     

    4)服务端

    TransportRequestHandler.processFetchRequest

    OneForOneStreamManager.getChunk

    返回respond(new ChunkFetchSuccess(req.streamChunkId, buf))给客户端,buf就是某一个blockid的FileSegmentManagedBuffer。

     

    5)客户端

    OneForOneBlockFetcher.ChunkCallback.onSuccess

    listener.onBlockFetchSuccess(blockIds[chunkIndex], buffer)

    ShuffleBlockFetcherIterator.sendRequest.BlockFetchingListener.onBlockFetchSuccess

    results.put(new SuccessFetchResult(BlockId(blockId), address, sizeMap(blockId), buf))

    客户端的另外一个线程

    ShuffleBlockFetcherIterator.next

    (result.blockId, new BufferReleasingInputStream(buf.createInputStream(), this))

     

    Download文件的通信原理

    另外还有一个stream通信协议,客户端首先需要构造StreamRequest请求,StreamRequest中包含待下载文件的URL

    1)客户端调用堆栈

    Executor.updateDependencies...

    org.apache.spark.util.Utils.fetchFile

    org.apache.spark.util.Utils.doFetchFile

    NettyRpcEnv.openChannel

    TransportClient.stream

    Send StreamRequest(streamId) streamId为文件的目录。

     

    2)服务端处理流程

    TransportRequestHandler.handle

    TransportRequestHandler.processStreamRequest

    OneForOneStreamManager.openStream

    返回new StreamResponse(req.streamId, buf.size(), buf)

     

    3)客户端处理流程

    TransportResponseHandler.handle

    TransportFrameDecoder.channelRead

    TransportFrameDecoder.feedInterceptor

    StreamInterceptor.handle

    callback.onData即NettyRpcEnv.FileDownloadCallback.onData

    然后返回client.stream(parsedUri.getPath(), callback)Utils.doFetchFile,最后org.apache.spark.util.Utils.downloadFile

     

     

    问题分析:

      当前spark shuffle时使用Fetch协议,由于使用堆外内存存储Fetch的数据,当Fetch某个map的数据特别大时,容易出现堆外内存的OOM。而申请内存部分在Netty自带的代码中,我们无法修改。

    另外一方面,Stream是下载文件的协议,需要提供文件的URL,而Shuffle只会获取文件中的一段数据,并且也不知道URL,因此不能直接使用Stream接口。

    解决方案:

      新增一个FetchStream通信协议,在OneForOneBlockFetcher中,如果一个block小于100Mspark.shuffle.max.block.size.inmemory)时,使用原有的方式Fetch数据,如果大于100M时,则使用新增的FetchStream协议,服务端在处理FetchStreamRequestFetchRequest的区别在于,FetchStreamRequest返回数据流,客户端根据返回的数据量写到本地临时文件,然后构造FileSegmentManagedBuffer给后续处理流程。

     

     

     

     

  • 相关阅读:
    RedHat5.8 编译内核驱动 合成initrd.img
    matrix-gui-2.0 将javascript文件夹改成js文件夹
    使用PHP配置文件
    Ubuntu 16.10 Apache PHP Server
    Ubuntu 16.10 中文环境 Shell输出英文提示
    制作SD卡img文件,并扩容
    Linux syslogd
    Windows cmd findstr
    jquery ztree异步搜索
    怎样在点击li时添加样式,移除兄弟样式
  • 原文地址:https://www.cnblogs.com/shenh062326/p/5251717.html
Copyright © 2020-2023  润新知